吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1519-1526.doi: 10.13229/j.cnki.jdxbgxb201505021

• • 上一篇    下一篇

输电线巡检机器人自主抓线的控制

李贞辉1, 2, 王洪光1, 王越超1, 姜勇1, 岳湘1, 2   

  1. 1.中国科学院 沈阳自动化研究所机器人学国家重点实验室,沈阳 110016;
    2.中国科学院大学,北京 100049
  • 收稿日期:2014-01-03 出版日期:2015-09-01 发布日期:2015-09-01
  • 作者简介:李贞辉(1984-),男,博士研究生.研究方向:电力特种机器人.E-mail:lizhenhui@sia.cn
  • 基金资助:
    “863”国家高技术研究发展计划项目(2006AA04Z203); 国家自然科学基金项目(61179049)

Line-grasping control for a power transmission line inspection robot

LI Zhen-hui1, 2, WANG Hong-guang1, WANG Yue-chao1, JIANG Yong1, YUE Xiang1, 2   

  1. 1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    2.University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-01-03 Online:2015-09-01 Published:2015-09-01

摘要: 针对一种双臂巡检机器人越障过程中脱线手臂的自主抓线问题,提出了一种自主抓线控制方法。首先,基于输电导线纹理特征和积分投影方法估计导线的位姿(偏距、偏角)。然后,基于输电导线的位姿偏差设计自主抓线的仿人智能控制器,利用偏角、偏距和线宽的估计值并结合机器人的倾角信息对机器人进行自主抓线控制。实验表明,该方法能在不同光照和背景下有效估计输电导线的位姿,可靠控制脱线手臂自动落线。

关键词: 自动控制技术, 自主抓线, 巡检机器人, 直线检测, 输电线位姿估计

Abstract: To solve the problem of line-grasping control when an inspection robot crosses obstacles automatically, this paper presents an automatic line-grasping control method. First, a pose estimation method for transmission line is designed based on its textural features and integral projection algorithm. Then, based on the pose error of the transmission line, a human simulating intelligent controller is designed. Using the offset distance, declination, width of the line, and combing with the obliquity of the robot, the automatic line-grasping control is realized. Experiment results with different backgrounds and illuminations show that the poses of the transmission lines can be estimated availably by the proposed method, and the automatic line-grasping task can be achieved reliably and precisely.

Key words: automatic control technology, automatic line-grasping control, inspection robot, line detection, pose estimation for transmission line

中图分类号: 

  • TP242
[1] Katrasnik J, Pernus F, Likar B. A survey of mobile robots for distribution power line inspection[J]. IEEE Transactions on Power Delivery, 2010, 25(1):485-493.
[2] Pouliot N, Richard P L, Montambault S. LineScout power line robot:characteization of a UTM-30LX LIDAR system for obatacle detection[C]∥Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura,Algarve, Portugal: IEEE,2012:4327-4334.
[3] Higuchi M, Maeda Y, Tsutani S, et al. Development of a mobile inspection robot for power transmission lines[J]. Journal of the Robotics Society of Japan, 1991, 9(4) : 457-463.
[4] Mario F M C, Alexandre Q B, Guilherme A S P, et al. A mobile manipulator for installation and removal of aircraft warning spheres on aerial power transmission lines[C]∥Proceedings of the IEEE International Conference on Robotics and Automation . Piscataway, USA: IEEE, 2002:3559-3564.
[5] Wang H, Zhang F, Jiang Y, et al. Development of an inspection robot for 500 kV EHV power transmission lines[C]∥Proceeding of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 2010:5107-5112.
[6] Han S S, Lee J M. Path-selection control of a power line inspection robot using sensor fusion[C]∥IEEE International Conference on Multi-sensor Fusion and Integration for Intelligent Systems. Piscataway, NJ, USA: IEEE, 2008: 8-13.
[7] 王鲁单,王洪光,房立金,等.基于视觉伺服的输电线巡检机器人抓线控制[J].机器人,2007,29(5):451-455. Wang Lu-dan, Wang Hong-guang, Fang Li-jin, et al. Visual-servo-based line-grasping control for power transmission line inspection robot[J]. Robot, 2007,29(5):451-455.
[8] 郭伟斌,王洪光,姜勇,等.一种输电线巡检机器人的自主抓线视觉伺服控制[J].机器人,2012,34(5):620-627. Guo Wei-bin, Wang Hong-guang, Jiang Yong, et al. Visual servo control for automatic line-grasping of power transmission line inspection robot[J]. Robot, 2012, 34(5): 620-627.
[9] 张运楚,梁自泽,谭民,等.架空输电线路巡线机器人越障视觉伺服控制[J].机器人,2007,29(2):111-116. Zhang Yun-chu,Liang Zi-ze, Tan Min,et al. Visual servo control of obstacle negotiation for overhead power line inspection robot[J]. Robot, 2007, 29(2): 111-116.
[10] 王聪,孙炜.高压输电线路除冰机器人抓线运动控制[J].机械工程学报,2011,47(9):8-15. Wang Cong, Sun Wei. Line-grasping control for the deicing robot on high voltage transmission line[J]. Journal of Mechanical Engineering, 2011, 47(9):8-15.
[11] 张文增,陈强,都东,等.直线检测的灰度投影积分方法[J].清华大学学报:自然科学版,2005,45(11):1446-1449. Zhang Wen-zeng, Chen Qiang, Du Dong, et al. Gray projecting integral method for line detection[J]. J Tsinghua Univ(Sci&Tech), 2005,45(11):1446-1449.
[12] 李祖枢,徐鸣,周其鉴.一种新型的仿人智能控制器(SHIC)[J].自动化学报,1990,6(6):503-509. Li Zu-shu, Xu Ming, Zhou Qi-jian. A new simulating human intelligent control[J]. Acta Automatica Sinica,1990,6(6):503-509.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!