吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1696-1701.doi: 10.13229/j.cnki.jdxbgxb201505045

• • 上一篇    下一篇

基于二次预测的粒子滤波算法

武勇, 王俊, 曹运合, 张培川   

  1. 西安电子科技大学 雷达信号处理国家重点实验室, 西安 710071
  • 收稿日期:2014-02-20 出版日期:2015-09-01 发布日期:2015-09-01
  • 作者简介:武勇(1987-),男,博士研究生.研究方向:雷达信号处理,粒子滤波,并行计算. E-mail:wuyongxidian@163.com
  • 基金资助:
    国家自然科学基金项目(61372136)

Novel particle filter algorithm based on second-prediction

WU Yong, WANG Jun, CAO Yun-he, ZHANG Pei-chuan   

  1. National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China
  • Received:2014-02-20 Online:2015-09-01 Published:2015-09-01

摘要: 为了解决粒子滤波在粒子采样阶段没有利用观测信息的问题,提出一种基于二次预测的粒子滤波算法(SP-PF),并在图形处理器(GPU)上进行了并行实现。首先,从状态转移函数中采样得到预测粒子,通过最小二乘估计,构建一个新的粒子采样器;然后,在预测粒子的基础上,将当前的观测信息引入到粒子的二次预测中,经过两次预测后,每个新粒子都是对当前状态的无偏估计;最后,通过粒子加权的方式对当前状态进行估计,估计完成后再对粒子进行重采样。实验结果表明:该算法的估计精度优于标准粒子滤波(SPF)、辅助粒子滤波(APF)和无迹粒子滤波(UPF),且GPU显著提升了SP-PF的处理效率。

关键词: 信息处理技术, 粒子滤波, 图形处理器, 最小二乘估计

Abstract: In order to handle the problem that current observation information is not used in the particle sampling stage of the Particle Filter (PF), a novel particle filter algorithm based on Second-Prediction (SP-PF) is proposed and implemented on the Graphics Processing Unit (GPU). First, sampling from the state transition function is performed to obtain the predicted particles, and by least square estimation, a new generator of sampling particles is constructed. Then, on the basis of the predicted particles, the current observation information is introduced into the secondary particle prediction. After double predictions, each new particle is an unbiased estimate of the current state. Finally, the current state is estimated by means of weighting these particles, and after the completion of state estimation, resampling is conducted. Experimental results demonstrate that the proposed algorithm improves the precision of estimation compared with Standard Particle Filter (SPF), Auxiliary Particle Filter (APF) and Unscented Particle Filter (UPF). Furthermore, the processing efficiency of SP-PF is greatly raised by using GPU.

Key words: information processing technology, particle filter, graphics processing unit, least square estimation

中图分类号: 

  • TN911
[1] Sedai S, Bennamoum M, Huynh D Q. A Gausian process guided particle filter for tracking 3D human pose in video[J]. IEEE Transactions on Image Processing, 2013, 22(11): 4286-4300.
[2] Yardim C, Gerstoft P, Hodgkiss W S. Tracking refractivity from clutter using Kalman and particle filters[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(4): 1060-1069.
[3] 夏楠, 邱天爽,李景春,等. 一种卡尔曼滤波与粒子滤波相结合的非线性滤波算法[J]. 电子学报, 2013, 41(1): 148-152. Xia Nan, Qiu Tian-shuang, Li Jing-chun, et al. A nonlinear filter algorithm combining the Kalman filter and the particle filter[J]. Acta Electronica Sinica, 2013, 41(1): 148-152.
[4] Kalman R E. A new approach to linear filtering and prediction problems[J]. Transactions of the AMSE Journal of Basic Engineering, 1960, 82(1): 35-45.
[5] Kotecha J H,Djuric P M. Gaussian particle filter[J]. IEEE Transactions on Signal Processing, 2003, 51(10): 2591-2601.
[6] Li Hong-wei, Wang Jun. Particle filter for manoeuvring target tracking via passive radar measurements with glint noise[J]. IET Radar Sonar and Navigation, 2012, 6(3): 180-189.
[7] Arulampalam M S,Maskell S,Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
[8] Georgy Jacques, Korenberg Michael J, Bayoumi Mohamed M. Low-cost three-dimensional navig- ation solution for RISS/GPS integration using mixture particle filter[J]. IEEE Transactions on Vehicular Technology, 2010, 59(2): 599-614.
[9] 戴连君,唐涛,蔡伯根. 基于自适应粒子滤波的北斗卫星信号周跳探测[J]. 吉林大学学报:工学版, 2013, 43(4): 1146-1152. Dai Lian-jun, Tang Tao, Cai Bo-gen. Cycle slip detection for BeiDou satellite based on adaptive particle filter[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(4): 1146-1152.
[10] Wang Ya-feng, Sun Fu-chun,Zhang You-an,et al. Central difference particle filter applied to transfer alignment for SINS on missiles[J]. IEEE Transactions on Aerospace and Electronic Systems,2012, 48(1): 375-387.
[11] Pitt M K,Shephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Statistical Association, 1999, 94(446): 590-599.
[12] Zhan Rong-hui, Xin Qin, Wan Jian-wei. Modified unscented particle filter for nonlinear Bayesian tracking[J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 7-14.
[13] Li Hong-wei, Wang Jun,Su Hong-tao. Improved particle filter based on differential evolution[J].Electronics Letters, 2011, 47(19):1078-1079.
[14] 侯静, 景占荣, 羊彦. 远距离干扰环境下目标跟踪的扩展卡尔曼粒子滤波算法[J]. 电子与信息学报, 2013, 35(7): 1587-1592. Hou Jing, Jing Zhan-rong, Yang Yan. Extended Kalman particle filter algorithm for target tracking in stand-off jammer[J]. Journal of Electronics & Information Technology, 2013, 35(7): 1587-1592.
[15] 于洪波, 王国宏,孙 芸,等. 一种融合UKF和EKF的粒子滤波状态估计算法[J]. 系统工程与电子技术, 2013, 35(7): 1375-1379. Yu Hong-bo, Wang Guo-hong, Sun Yun, et al. Particle filtering algorithm of state estimation on fusion of UKF and EKF[J]. Systems Engineering and Electronics, 2013, 35(7): 1375-1379.
[16] 何友,修建娟,关欣,等. 雷达数据处理及应用[M]. 北京:电子工业出版社, 2013: 76-78.
[17] 李红伟, 王俊, 王海涛. 一种基于差分演化的粒子滤波算法[J]. 电子与信息学报, 2011, 33(7): 1639-1643. Li Hong-wei, Wang Jun, Wang Hai-tao. A new particle filter based on differential evolution method[J]. Journal of Electronics & Information on Technology, 2011, 33(7): 1639-1643.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!