吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1702-1708.doi: 10.13229/j.cnki.jdxbgxb201505046

• • 上一篇    下一篇

色域映射失真类型图像的质量评价

宋超1, 2, 王瑞光1, 冯英翘1, 2, 陈宇1, 邓意诚1   

  1. 1.中国科学院 长春光学精密机械与物理研究所, 长春 130033;
    2.华北理工大学 信息工程学院,河北 唐山 063009
  • 收稿日期:2014-01-14 出版日期:2015-09-01 发布日期:2015-09-01
  • 通讯作者: 王瑞光(1957-),男,研究员,博士生导师.研究方向:平板显示技术,LED大屏幕显示控制系统.E-mail:wangruiguang1957@126.com
  • 作者简介:宋超(1986-),男,博士研究生.研究方向:LED显示控制及图像处理技术.E-mail:troysung@163.com
  • 基金资助:
    国家科技支撑计划项目(2009BAE7373B00)

Quality assessment method for gamut mapping distortion type images

SONG Chao1, 2, WANG Rui-guang1, FENG Ying-qiao1, 2, CHEN Yu1, DENG Yi-cheng1   

  1. 1.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences, Changchun 130033,China;
    2.College of Information Technology,North China University of Science and Technology,Tangshan 063009,China
  • Received:2014-01-14 Online:2015-09-01 Published:2015-09-01

摘要: 针对色域映射失真类型图像,在传统算法的基础上提出了一种新的图像质量评价方法。首先,阐述了该评价方法对图像特征提取的目的及方法,并形成最终的评价公式GMSIM。然后,使用已有的3个色域映射图像集和TID2008图像库对GMSIM算法进行参数拟合和预测准确性分析,对色域映射图像库采用命中率来表征算法性能。实验结果显示:GMSIM算法对色域映射失真图像主观感知的预测准确性比传统的SSIM方法提高约4.5%,但仍有较大的进步空间;在TID2008图像库的预测性能也有所提高。

关键词: 信息处理技术, 图像质量评价, 色域映射

Abstract: For gamut mapping distortion type images, a new image assessment method was proposed based on traditional algorithms. First, each image feature extraction objective and extraction method were elaborated, and a final assessment formula, named GMSIM, was established based on these features. Then, applying three existing gamut mapping image sets and the TID2008 image library, the parameters of the GMSIM algorithm were fitted, and the prediction accuracy of the algorithm was analyzed. For gamut mapping image sets, hit rate was used as indication of the algorithm performance. Experiment results show that, compared with traditional SSIM method, the proposed GMSIM algorithm prediction accuracy of subjective perceptions for gamut mapping distortion images was improved by about 4.5%, although there is still much room for improvement. The prediction performance for TID2008 image library is also improved to some extent.

Key words: information processing technology, image quality assessment, gamut mapping

中图分类号: 

  • TN911
[1] Zhang Lin, Zhang Lei, Mou Xuan-qin, et al. A comprehensive evaluation of full reference image quality assessment algorithms[C]∥IEEE International Conference on Image Processing, Orlando, 2012: 1477-1480.
[2] 黄小乔,石俊生, 杨健, 等. 基于色差的均方误差与峰值信噪比评价彩色图像质量研究[J].光子学报,2007,36(增刊):295-298. Huang Xiao-qiao, Shi Jun-sheng, Yang Jian, et al. Study on color image quality evaluation by MSE and PSNR based on color difference[J]. Acta Photonica Sinica, 2007, 36 (Sup.):295-298.
[3] 王宇庆,朱明.评价彩色图像质量的四元数矩阵最大奇异值方法[J].光学精密工程,2013,21(2):469-478. Wang Yu-qing, Zhu Ming. Maximum singular value method of quaternion matrix for evaluating color image quality[J]. Optics and Precision Engineering, 2013, 21(2): 469-478.
[4] 武海丽,黄庆梅,苑馨方,等. 基于S-CIELAB和iCAM模型的图像颜色质量评价方法的实验研究[J].光学学报,2010,30(12):3447-3453. Wu Hai-li, Huang Qing-mei, Yuan Xin-fang, et al. Experimental research of evaluating methods of image quality based on models of S-CIELAB and iCAM[J]. Acta Optica Sinica, 2010, 30(12): 3447-3453.
[5] Baranczuk Z. Image-individualized gamut mapping algorithms[J]. Journal of Imaging and Technology, 2010, 54(3):030201.
[6] Zhang Lin, Zhang Lei, Mou Xuan-qin, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
[7] Kovesi P. Image features from phase congruency[J].Videre: Journal of Computer Vision Research, 1999, 1(3): 1-26.
[8] Zhang Xuan-de, Feng Xiang-chu, Wang Wei-wei, et al. Edge strength similarity for image quality assessment[J]. IEEE Signal Processing Letters, 2013, 20(4): 319-322.
[9] 黄庆梅,赵达尊.彩色复制中的色域映射[J].照明工程学报,2002,13(1): 19-26. Huang Qing-mei, Zhao Da-zun. Color gamut mapping in color reproduction[J]. China Illuminating Engineering Journal, 2002, 13(1): 19-26.
[10] Ponomarenko N, Lukin V, Zelenshy A, et al. TID2008-a database for evaluation of full-reference visual quality assessment metrics[J]. Advanced of Modern Radio-electronics, 2009, 10:30-45.
[11] Wang Zhou, Bovik Alan Contrad, Sheikh Hamid Rahim, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!