吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1168-1174.doi: 10.13229/j.cnki.jdxbgxb201504021
曲建俊, 郭文峰, 李将, 刘畅
QU Jian-jun, GUO Wen-feng, LI Jiang, LIU Chang
摘要: 基于被动箝位和三角放大的工作原理,设计了一款单向直线压电驱动器。可以在断电状态下自锁,箝位体三角放大结构提高了箝位体压电叠堆的输出位移。实验验证了驱动器运行原理的可行性,并测试了驱动器空载特性和负载特性,以及通电和断电时箝位力的大小,分析了驱动力较小的影响因素。驱动电压为150 V,驱动频率为50 Hz时,驱动器运行平稳,最大驱动力为2.1 N,空载运行速度为0.38 mm/s;驱动频率为70 Hz时,运行速度最大,为0.43 mm/s。
中图分类号:
[1] Li Jun, Zhu Zhen-qi. Design of a linear piezomotor with ultra-high stiffness and nanoprecision[J]. IEEE/ASME Transactions on Mechatronics, 2000, 4(5): 441-443. [2] Chen Quan-fang, Yao Da-jeng, Kim Chang-jin, et al. Mesoscale actuator device: micro interlocking mechanism to transfer macro load[J]. Sensors and Actuators, 1999, 73(1):30-36. [3] Park J, Keller S, Carman G P, et al. Development of a compact displacement accumulation actuator device for both large force and large displacement[J]. Sensors and Actuators A, 2001, 90(3): 191-202. [4] 刘建芳. 压电步进精密驱动器理论及实验研究[D]. 长春:吉林大学机械科学与工程学院,2005. Liu Jian-fang. Theoretical and experimental study on piezoelectric precision step actuator[D]. Changchun: College of Mechanical Science and Engineering, Jilin University, 2005. [5] 刘建芳,杨志刚,程光明,等. 压电驱动精密直线步进电机研究[J]. 中国电机工程学报,2004(4):102-107. Liu Jian-fang, Yang Zhi-gang, Cheng Guang-ming, et al. A study of precision PZT line step motor[J]. Proceedings of the CSEE, 2004(4):102-107. [6] 张鹏. 内箝位步进式压电驱动机构研究[D]. 长春:吉林大学机械科学与工程学院,2005. Zhang Peng. Research on theory and experiment of method of stepping driving by piezoelectric strangulated inside[D]. Changchun: College of Mechanical Science and Engineering, Jilin University, 2005. [7] 吕超. 新型压电步进直线精密驱动器结构的研究[D]. 长春:吉林大学机械科学与工程学院,2006. Lv Chao. Research on a new structure of precision piezoelectric linear stepper actuator[D].Changchun: College of Mechanical Science and Engineering, Jilin University, 2005. [8] 张兆成. 新型压电尺蠖精密驱动器柔性机构分析与实验研究[D]. 哈尔滨:哈尔滨工业大学机电工程学院,2010. Zhang Zhao-cheng. Compliant mechanism analysis and experiments for a new type piezoelectric inchworm precision actuator[D]. Harbin: School of Mechatronics Engineering, Harbin Institute of Technology,2010. [9] Zhang Zhi-jun,Xu Ming-long,Feng Bo, et al. Research for a new actuator with variable step and large displacement[J]. International Journal of Applied Electromagnetics and Mechanics,2010,33(1):597-604. [10] 肖文兰. 尺蠖式压电步进进针机构的研究[D].天津:天津大学精密仪器与光电子工程学院,2011. Xiao Wen-lan. Study on piezoelectric inchworm-type probe-approaching stepper[D]. Tianjin: College of Precision Instrument and OPTO-Electronics Engineering, Tianjin University, 2011. [11] 潘雷. 多足箝位式压电直线电机的研究[D]. 南京:南京航空航天大学航空工程学院,2012. Pan Lei. Study on multi-foot clamping piezoelectric linear motor[D]. Nanjing: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2012. [12] 赵宏伟, 吴博达, 程光明,等. 高精度压电步进直线驱动器[J]. 吉林大学学报:工学版,2006,36(3):350-354. Zhao Hong-wei, Wu Bo-da, Cheng Guang-ming, et al. Ultra-precision piezoelectric stepping linear actuator[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(3): 350-354. [13] Ferrier N,Markovic M,Perriard Y. Conception of a piezoelectric linear motor for the generation of high linear forces[C]∥International Conference on Electrical Machines and Systems (ICEMS),Beijing,2011:1-6. [14] Itatsu Yuki, Torii Akihiro, Ueda Akiteru. Inchworm type microrobot using friction force control mechanisms[C]∥International Symposium on Micro-Nanomechatronics and Human Science, Japan,2011:273-278. [15] Liang Yuan-chang, Taya Minoru, Xiao John Q, et al. Design of an inchworm actuator based on a ferromagnetic shape memory alloy composite[J]. Smart Materials and Structures,2012,21(11):1-8. [16] Li J, Sedaghati R, Dargahi J, et al. Design and development of a new piezoelectric linear Inchworm actuator[J]. Mechatronics, 2005,15(6): 651-680. [17] 杜习波. 基于三角放大原理的压电型精密定位机构研究[D]. 焦作:河南理工大学机械与动力工程学院,2009. Du Xi-bo. Study on precision positioning mechanism of piezoelectric actuator based on the principle of triangulation amplification[D]. Jiaozuo: School of Mechanical and Power Engineering, Henan Polytechnic University, 2009. |
[1] | 毕秋实,王国强,黄婷婷,毛瑞,鲁艳鹏. 基于DEM-FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770-1776. |
[2] | 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777-1786. |
[3] | 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507. |
[4] | 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514. |
[5] | 王涛, 伞晓刚, 高世杰, 王惠先, 王晶, 倪迎雪. 光电跟踪转台垂直轴系动态特性[J]. 吉林大学学报(工学版), 2018, 48(4): 1099-1105. |
[6] | 贺继林, 陈毅龙, 吴钪, 赵喻明, 汪志杰, 陈志伟. 起重机卷扬系统能量流动分析及势能回收系统实验[J]. 吉林大学学报(工学版), 2018, 48(4): 1106-1113. |
[7] | 谢传流, 汤方平, 孙丹丹, 张文鹏, 夏烨, 段小汇. 立式混流泵装置压力脉动的模型试验分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1114-1123. |
[8] | 孙秀荣, 董世民, 王宏博, 李伟成, 孙亮. 整体抽油杆柱在油管内空间屈曲的多段式仿真模型对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1124-1132. |
[9] | 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139. |
[10] | 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146. |
[11] | 刘志峰, 赵代红, 王语莫, 浑连明, 赵永胜, 董湘敏. 重载静压转台承载力与油垫温度场分布的关系[J]. 吉林大学学报(工学版), 2018, 48(3): 773-780. |
[12] | 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781-786. |
[13] | 李锐, 张路阳, 刘琳, 武粤元, 陈世嵬. 基于相似理论的三跨桥梁磁流变隔振[J]. 吉林大学学报(工学版), 2018, 48(3): 787-795. |
[14] | 陈忠敏, 侯力, 段阳, 张祺, 杨忠学, 蒋易强. 新型摆线针轮行星减速器传动系统的振动特性[J]. 吉林大学学报(工学版), 2018, 48(1): 174-185. |
[15] | 刘念, 徐涛, 徐天爽, 胡贤磊, 刘维海. 基于差厚技术的汽车仪表板管梁轻量化设计[J]. 吉林大学学报(工学版), 2018, 48(1): 199-204. |
|