吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 632-638.doi: 10.13229/j.cnki.jdxbgxb201602044

• 论文 • 上一篇    下一篇

时变遗忘因子动态DOA跟踪算法

单泽彪1, 2, 石要武1, 2, 刘小松1, 李新波1   

  1. 1.吉林大学 通信工程学院,长春 130022;
    2.吉林大学 工程仿生教育部重点实验室,长春 130022
  • 收稿日期:2014-12-30 出版日期:2016-02-20 发布日期:2016-02-20
  • 通讯作者: 李新波(1980-),男,讲师,博士.研究方向:阵列信号处理.E-mail:cinple@126.com E-mail:zbshan@126.com
  • 作者简介:单泽彪(1986-),男,博士研究生.研究方向:阵列信号处理,DOA跟踪.E-mail:zbshan@126.com
  • 基金资助:
    国家自然科学基金项目(51075175,61571462); 吉林省青年科研基金项目(20140520064JH)

DOA tracking algorithm of moving target with variable forgetting factor

SHAN Ze-biao1, 2, SHI Yao-wu1, 2, LIU Xiao-song1, LI Xin-bo1   

  1. 1.College of Communication Engineering, Jilin University, Changchun 130022, China;
    2.Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
  • Received:2014-12-30 Online:2016-02-20 Published:2016-02-20

摘要: 针对目标信号源波达方向(DOA)实时变化的情况,提出了一种时变遗忘因子的自适应样本协方差矩阵更新方法.时变遗忘因子根据DOA变化的快慢自适应调节自身的大小,从而合理地调整历史数据及当前采样数据在协方差矩阵更新过程中所占的权重.在更新协方差矩阵后,对其直接应用最大似然估计方法,并将序列二次规划(SQP)应用于似然函数的优化求解上,最终实现了DOA的动态跟踪.仿真结果表明:该算法具有解相干的能力和良好的跟踪精度,并且在小样本,低信噪比下仍能达到比较满意的跟踪效果.

关键词: 信息处理技术, DOA跟踪, 时变遗忘因子, 序列二次规划, 最大似然估计

Abstract: To track the Direction of Arrival (DOA) of the moving targets quickly and accurately, an adaptive subspace updating algorithm with a variable forgetting factor is proposed. First, this tracking algorithm adaptively adjusts the weights of current and historical data in a covariance matrix according to the DOA change speed. Then the maximum likelihood estimation algorithm is used and the Sequence Quadratic Program (SQP) is applied to optimize the likelihood function in order to reduce the computation cost of the algorithm. Experimental results show that the proposed DOA tracking algorithm has the ability to track coherent sources and obtain acceptable tracking results even under the condition of low SNR and small snapshot number in comparison with other methods.

Key words: information processing, DOA tracking, variable forgetting factor, sequence quadratic program(SQP), maximun likelihood estimation

中图分类号: 

  • TN911
[1] Dmochowski J, Benesty J, Affes S. Direction of arrival estimation using the parameterized spatial correlation matrix[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(4): 1327-1339.
[2] Wan F, Zhu W, Swamy M N S. Spacial extrapolation-based blind DOA estimation approach for closely spaced sources[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 569-582.
[3] Reddy V V, Ng B P, Khong A W H. Derivative-constrained frequency-domain wideband DOA estimation[J]. Multidimensional Systems and Signal Processing, 2014, 25(1): 211-233.
[4] Badeau R. Fast approximated power iteration subspace tracking[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 2931-2941.
[5] Perry P O, Wolfe P J. Minimax rank estimation for subspace tracking[J].IEEE Transactions on Signal Processing, 2010, 4(3): 504-513.
[6] Kajimura Y, Kikuma N, Hirayama H, et al. DOA estimation using subspacing tracking method for coherent waves[C]//Proceeding of 2012 International Symposium on Antennas and Propagation, Nagoya, Japan: ISAP, 2012: 1148-1151.
[7] Yang B. Asymptotic convergence analysis of the projection approximation subspace tracking algorithms[J]. Signal Processing, 1996,50(1):123-136.
[8] Yang B. Projection approximation subspace tracking[J]. IEEE Transactions on Signal Processing,1995,43(1):95-107.
[9] Abed-Meraim K, Chkeif A, Hua Y. Fast orthonormal PAST algorithm[J]. IEEE Transactions on Signal Processing,2000,7(3):60-62.
[10] 胡茂兵,汤炜,蔡灿辉.一种新的子空间更新算法在DOA估计中的应用[J].华侨大学学报:自然科学版,2012,33(4): 375-379.
Hu Mao-bing, Tang Wei, Cai Can-hui. Application of a new subspace updating algorithm in DOA estimation[J]. Journal of Huaqiao University(Natural Science), 2012, 33(4): 375-379.
[11] Rao C R. Tracking the direction of arrival of multiple moving targets[J]. IEEE Transactions on Signal Processing,1994,42(5):1133-1144.
[12] Zhou Y F. Tracking the direction-of-arrival of multiple moving targets by passive arrays algorithm[J]. IEEE Transactions on Signal Processing,1999,47(10):2655-2666.
[13] 刁鸣,袁熹,高洪元,等. 一种新的基于粒子群算法的DOA跟踪方法[J]. 系统工程与电子技术,2009,31(9):2046-2049.
Diao Ming, Yuan Xi, Gao Hong-yuan, et al. New method of estimating direction-of-arrival of moving sources based on particle swarm algorithm[J]. Systems Engineering and Electronics, 2009,31(9):2046-2049.
[14] 张志成,林君,石要武,等.基于人工蜂群算法的波达方向和多普勒频率联合估计[J].吉林大学学报:工学版,2013,43(4):1104-1109.
Zhang Zhi-cheng,Lin Jun,Shi Yao-wu,et al.Joint direction-of-arrival and Doppler frequency estimation based on artificial bee colony algorithm[J].Journal of Jilin University(Engineering and Technology Edition),2013,43(4):1104-1109.
[15] 单泽彪,石要武,刘小松,等.应用人工蜂群算法的动态波达方向跟踪[J].光学精密工程,2015,23(3):838-845.
Shan Ze-biao,Shi Yao-wu,Liu Xiao-song,et al.DOA tracking of moving targets by artificial bee colony algorithm[J].Optics and Prccision Engineering,2015,23(3):838-845.
[16] Gill P E, Walter M, Michael A. SNOPT: an SQP algorithm for large-Scale constrained optimization[J]. Siam Review, 2005, 47(1):99-131.
[17] 张志成,林君,石要武,等.用加权子空间拟合和量子粒子群算法联合估计多普勒频率和波达方向[J]. 光学精密工程,2013,21(9): 2445-2451.
Zhang Zhi-cheng, Lin Jun, Shi Yao-wu, et al. Joint estimation of doppler and DOAs by WSF-QPSO method[J]. Optics and Precision Engineering, 2013,21(9): 2445-2451.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!