吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 639-645.doi: 10.13229/j.cnki.jdxbgxb201602045

• 论文 • 上一篇    下一篇

基于Contourlet统计特性的无参考图像质量评价

焦淑红1, 齐欢1, 林维斯2, 唐琳1, 申维和3   

  1. 1.哈尔滨工程大学 信息与通信工程学院, 哈尔滨 150001;
    2.南洋理工大学 计算机工程学院, 新加坡 639798;
    3.中国运载火箭技术研究院 空间物理重点实验室, 北京100076
  • 收稿日期:2014-08-28 出版日期:2016-02-20 发布日期:2016-02-20
  • 通讯作者: 齐欢(1989-),女,博士研究生.研究方向:图像处理与机器视觉.E-mail:heuqihuan@163.com E-mail:jiaoshuhong@hrbeu.edu.com
  • 作者简介:焦淑红(1966-),女,教授,博士.研究方向:图像处理与机器视觉.E-mail:jiaoshuhong@hrbeu.edu.com
  • 基金资助:
    国家自然科学基金项目(61201238)

No-reference quality assessment based on the statistics in Cntourlet domain

JIAO Shu-hong1, QI Huan1, LIN Wei-si2, TANG Lin1, SHEN Wei-he3   

  1. 1.College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China;
    2.School of Computer Engineering,Nanyang Technological University,Singapore 639798,Singapore;
    3.Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
  • Received:2014-08-28 Online:2016-02-20 Published:2016-02-20

摘要: 利用Contourlet统计特征建立自然统计模型与待评价图像模型,提出了Contourlet域无参考图像质量评价方法(SCIQA).通过在主观数据库上的实验表明,无论同种干扰类型的图像还是多种干扰图像集合,SCIQA均明显优于经典全参考算法和通用型无参考算法,并且具有较强的通用性.

关键词: 信息处理技术, 图像质量评价, Contourlet统计特征

Abstract: The statistic features in Cntourlet domain are employed to build the natural statistic model and the tested image model first. Then a no-reference assessment algorithm in Contourlet domain (SCIQR) is proposed. Experiment results on subjective databases show that SCIQR outperforms the classical full-reference image quality assessment algorithm and the universal no-reference algorithm no-matter on single distortion type images and on the set of different types of distortion images. This demonstrates that SCIQR has good universality.

Key words: information processing technology, image quality assessment, statistics in Contourlet domain

中图分类号: 

  • TN911
[1] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to struc-tural similarity[J]. IEEE Transactions on Image Processing, 2004,13 (4):600-612.
[2] 王宇庆.基于局部方差和互信息的融合图像质量评价[J]. 光学精密工程,2015,23(10z):515-521.
Wang Yu-qing.Fusion image assessment based on local variance and singular value decomposition[J]. Optics and Precision Engineering, 2015,23(10z):515-521.
[3] 卢彦飞, 张涛, 章程.应用log-Gabor韦伯特征的图像质量评价[J]. 光学精密工程,2015,23(11):3259-3269.
Lu Yan-fei, Zhang Tao, Zhang Cheng. Image quality assessment using log-Gabor Weber feature[J]. Optics and Precision Engineering,2015,23(11):3259-3269.
[4] Mittal A, Soundararajan R,Bovik A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(4):209-212.
[5] Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Tansaction on Image Processing, 2005, 14(12):2091-2106.
[6] 吕丹,毕笃彦. 基于结构相似的DCT域图像质量评价[J]. 吉林大学学报:工学版,2011,41(6):1771-1776.
Lyu Dan, Bi Du-yan. Image quality assessment in DCT domain based on structural similarity[J]. Journal of Jilin University (Engineering and Technology Edition),2011, 41(6): 1771-1776.
[7] Liu Li-xiong, Dong Hong-ping, Huang Hua. No-reference image quality assessment in curvelet domain[J]. Signal Processing: Image Communi-cation, 2014, 29(4), 494-505.
[8] Lu Wen, Zeng Kai, Tao Da-cheng. No-refernece image quality assessment in contourlet domain[J]. Neurocomputing, 2010, 73(6): 784-794.
[9] Moorthy A K, Bovik A C. Blind image quality assessment: from natural scene statistics to perceptual quality[J]. IEEE Transaction on Image Processing,2011,20(12):3350-3364.
[10] Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural images and its applica-tion to evaluating segmentation algorithms and measuring ecological statistics[C]//IEEE Inter-national Conference on Computer Vision, Van-couver, BC, USA, 2001:416-423.
[11] Wang Z, Sheikh H R, Bovik A C. No-reference perceptual quality assessment of JPEG com-pressed images[C]//International Conference on Image Processing, New York, USA, 2002:477-480.
[12] 金波. 基于自然图像信息统计的无参考图像质量评估研究[D]. 无锡: 江南大学物联网工程学院, 2012.
Jin Bo.The research of no-reference image quality assessment based on statistic of natural image information[D].Wuxi:School of Internet of Things Engineering,Jiangnan University,2012.
[13] Sheikh H R, Wang Z, Cormack L, et al. Live im-age quality assessment database release2[DB/OL].[2009-12-14]. http://live.ece.utexas.edu/re-search/quality
[14] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Tansaction on Image Processing, 2012, 21(12):4695-4708.
[15] Larson E C, Chandler D M. Categorical image quality (CSIQ) database 2009[DB/OL]. [2009-12-14].http://vision.okstate.edu/csiq
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!