吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 2094-2102.doi: 10.13229/j.cnki.jdxbgxb201606045
刘媛媛1, 2, 陈贺新1, 赵岩1, 杨楚皙1
LIU Yuan-yuan1, 2, CHEN He-xin1, ZHAO Yan1, YANG Chu-xi1
摘要: 为了匹配离散余弦变换(DCT)算法不同大小分块,实现不同维度DCT结构的兼容性,提出了一种多维DCT立体类蝶形算法,并对其单元式通道结构进行研究。首先,根据DCT理论,以“张量积”运算为基础,介绍了DCT及其反变换IDCT立体类蝶形算法理论原理,给出了多维算法推导。然后,以DCT/IDCT立体类蝶形算法数学运算为理论基础,从一维引申至多维立体类蝶形图形式,并根据多维与一维的关系,以一维单元式通道结构为基础,提出多维单元式通道结构。实验结果表明:本文算法仅需要传统算法中50%的加法器和约30%的乘法器;算法耗时与分块大小和维度有关,在从三维到五维的实验耗时检测中,本文算法耗时不超过普通DCT算法耗时的10%,具有速度快、复杂度低、多维兼容性的特点。
中图分类号:
[1] Conceicao R, Souza J C, Jeske R, et al. Power efficient and high throughput multi-size IDCT targeting UHD HEVC decoders[C]∥IEEE International Symposium on Circuits and Systems,Melboume, Australia,2014:1925-1928. [2] Sun H M, Zhou D J,Liu P L, et al. A low-cost VLSI architecture of multiple-size IDCT for H.265/HEVC[DB/OL]. [2014-05-08].http://www.aoni.waseda.jp/zhou/pdf/ieice/e97-a_12_2467.pdf. [3] Pastuszak G. Flexible architecture design for H.265/HEVC inverse transform[J]. Circuits Systems and Signal Processing,2015,34(6):1931-1945. [4] 杨启洲,刘一清. 基于HEVC的多长度DCT变换的VLSI设计[J]. 微电子学,2015,45(1):102-105. Yang Qi-zhou,Liu Yi-qing. Design of DCT of different lengths VLSI architecture for HEVC[J]. Microelectronics,2015,45(1):102-105. [5] 桑爱军,穆森,王墨林,等. 基于多维矢量矩阵的多视角视频编码[J]. 吉林大学学报:工学版,2013,43(4):1110-1115. Sang Ai-jun, Mu Sen, Wang Mo-lin,et al. Multi-view video coding based on multi-dimensional vector matrix[J]. Journal of Jilin University(Engineering and Technology Edition),2013,43(4):1110-1115. [6] 孙文邦,陈贺新,孙文斌,等. 基于变换基阵的SDCT 算法[J]. 吉林大学学报:工学版,2011,41(增刊1):325-331. Sun Wen-bang,Chen He-xin,Sun Wen-bin,et al. SDCT operation based on transform basic matrix[J]. Journal of Jilin University(Engineering and Technology Edition),2011,41(Sup.1):325-331. [7] 桑爱军,杨树媛,赵欣.基于多维矢量矩阵离散余弦变换的熵编码[J]. 吉林大学学报:工学版,2011,41(增刊1):319-324. Sang Ai-jun, Yang Shu-yuan, Zhao Xin. Entropy code based on multidimensional vector matrix DCT[J]. Journal of Jilin University(Engineering and Technology Edition),2011,41(Sup.1):319-324. [8] 赵志杰,陈贺新,桑爱军. 三维矩阵可变分割彩色图像压缩编码[J]. 吉林大学学报:工学版,2009,39(1):194-197. Zhao Zhi-jie, Chen He-xin, Sang Ai-jun. Color image compression based on variable matrix size three dimensional matrix wide DCT[J]. Journal of Jilin University(Engineering and Technology Edition),2009,39(1):194-197. [9] Huang H,Xiao L Y. CORDIC based fast algorithm for power-of-point DCT and its efficient VLSI implementation[J]. Microelectronics Journal, 2014,45(11):1480-1488. [10] 桑爱军,王艇,栾晓利,等. 2M维矢量余弦整数变换核矩阵[J]. 光学精密工程,2013,21(7):1891-1897. Sang Ai-jun,Wang Ting,Luan Xiao-li,et al. 2M-dimensional vector integer DCT transform kernel matrix[J]. Optics and Precision Engineering,2013,21(7):1891-1897. [11] Chen Y H,Chen J N,Chang T Y, et al. High-throughput multistandard transform core supporting MPEG/H.264/VC-1 using common sharing distributed arithmetic[J]. IEEE Transactions on Very Large Scale Integration (VLSI) System,2014,22(3):463-474. [12] Chen Y H, Jou R Y, Chang T Y, et al. A high-throughput and area-efficient video transform core with a time division strategy[J]. IEEE Transactions on Very Large Scale Integration (VLSI) System,2014,22(11): 2268-2277. [13] Huang H, Xiao L Y, Liu J M. CORDIC-based unified architecture for computation of DCT/IDCT/DST/IDST[J]. Circuits Systems and Signal Processing,2014,33(3):799-814. [14] Aggrawal E, Kumar N. High throughput pipelined 2D discrete cosine transform for video compression[C]∥International Conference on Issues and Challenges in Intelligent Computing Techniques, Ghaziabad, India,2014:702-705. [15] Nikara J A, Takala J H, Astola J T. Discrete cosine and sine transforms-regular algorithms and pipeline architectures[J]. Signal Processing,2006,86(2):230-249. [16] Takala J, Nikara J, Punkka K. Pipeline architecture for two-dimensional discrete cosine transform and its inverse[C]∥Proceedings of the Ninth International Conference on Electronics Circuits Systems, Dubrovnik, Croatia,2002:749-750. [17] Boussakta S, Alshibami H O. Fast algorithm for the 3-D DCT-II[J]. Signal Processing,2004,52(4):992-1001. [18] Sang A J, Sun T N,Chen H X, et al. 6D vector orthogonal transformation and its application in multiview video coding[J]. The Imaging Science Journal,2013,61(4):341-350. |
[1] | 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894. |
[2] | 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903. |
[3] | 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909. |
[4] | 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916. |
[5] | 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924. |
[6] | 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930. |
[7] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[8] | 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944. |
[9] | 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[10] | 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297. |
[11] | 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[12] | 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956. |
[13] | 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506. |
[14] | 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632. |
[15] | 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639. |
|