吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 567-576.doi: 10.13229/j.cnki.jdxbgxb201702031

• • 上一篇    下一篇

高压巡检机器人下坡节能控速方法

杨智勇1, 吴功平1, 2, 王伟1, 郭磊1, 杨守东3, 曹琪3, 张义杰1, 胡鹏1   

  1. 1.武汉大学 动力与机械学院,武汉 430072;
    2.广东科凯达智能机器人有限公司,广东 佛山 528300;
    3.国家电网吉林省电力有限公司 白山供电公司,吉林 白山 134300
  • 收稿日期:2015-10-26 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 王伟(1978-),男,讲师,博士.研究方向:电力作业机器人.E-mail:whuww@whu.edu.cn
  • 作者简介:杨智勇(1987-),男,博士研究生.研究方向:电力作业机器人.E-mail:zhiyongyang@whu.edu.cn
  • 基金资助:
    广东省智能机器人重大专项项目(2015B090922007); 佛山市创新科研团队项目(2015IT100143); 南方智谷引进团队项目(2015CXTD01).

Energy saving control method of downslope speed for high-voltage transmission line inspection robot

YANG Zhi-yong1, WU Gong-ping1, 2, WANG Wei1, GUO Lei1, YANG Shou-dong3, CAO Qi3, ZHANG Yi-jie1, HU Peng1   

  1. 1.School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;
    2.Guangdong Keystar Intelligence Robot Co., Ltd., Foshan 528300, China;
    3.Baishan Power Supply Bureau,State Grid Jilin Electric Power Co.,Baishan 134300, China
  • Received:2015-10-26 Online:2017-03-20 Published:2017-03-20

摘要: 为了减少高压线路巡检机器人能量消耗并对下坡速度进行控制,提出了一种回馈制动与能耗制动相结合的无动力下坡控速方法。通过对下坡过程中机器人受力分析,设计了前轮回馈制动以及后轮能耗制动相结合的控速与能量回收方案。根据输电线路悬链线结构模型特征,提出了机器人无动力恒速下坡控制策略,依据对前后轮无动力恒速下坡特性分析,求解前轮直流电机能量回馈的转速范围,通过调节系统PWM波占空比实现对机器人后轮能耗控速。采用RBF神经网络控制方法对因传感器检测及线路工况等影响因素引起的控制系统PWM波占空比误差进行修正。通过在模拟高压线路和实际高压线路试验验证,结果表明该方法能够达到下坡控速和减少能耗的目的。

关键词: 自动控制技术, 巡检机器人, 架空输电线路, 能耗制动, 回馈制动

Abstract: In order to decrease the energy consumption of the inspection robot for high-voltage transmission lines and control the downslope speed, a speed control method without motive power is proposed. The proposed method combines the regenerative braking and dynamic braking. By analyzing the force of the robot in downslope process, speed control and energy recovery schemes are designed, which combine front wheel regenerative braking and rear wheel dynamic braking. According to the catenary construction feature of the lines, a strategy to control the robot at constant speed without motive power in the downslope process is presented. Based on characteristic analysis of the front and rear wheels when the robot is going downslope at constant speed without motive power, the range of speed of the direct current dynamo of front wheel for energy feedback is obtained. The speed control of the rear wheel energy consumption is realized by adjusting PWM wave duty cycle. The PWM wave duty cycle error of the control system, which is caused by the factors, such as sensor check and line working conditions, is corrected by adopting RBF neural network control model. Experiments are carried out on both simulated and real high-voltage transmission lines. Results show that the proposed method can achieve the purpose of downslope speed control and saving energy consumption.

Key words: automatic control technology, inspection robot, high-voltage transmission lines, energy braking, regenerative braking

中图分类号: 

  • TP242.6
[1] Pouliot N, Montambault S. Field‐oriented developments for LineScout technology and its deployment on large water crossing transmission lines[J]. Journal of Field Robotics, 2012, 29(1): 25-46.
[2] Peng W, Feng L, Guanqun W, et al. Research on self-power supply system of inspection robot for high-voltage power transmission lines[C]∥2013 Third International Conference on Intelligent System Design and Engineering Applications,IEEE, 2010:244-247.
[3] 白玉成, 吴功平, 肖华,等. 输电线路感应取电装置参数匹配方法[J]. 电力系统自动化, 2010, 34(21):75-80.
Bai Yu-cheng, Wu Gong-ping, Xiao Hua, et al. A parameter matching method for power induction devices on power transmission lines[J]. Automation of Electric Power Systems, 2010, 34(21):75-80.
[4] 孟遂民, 孔伟.架空输电线路设计[M]. 北京:中国电力出版社,2007:62-67.
[5] 边耀璋. 汽车新能源技术[M]. 北京:人民交通出版社,2003.
[6] 黄斐梨, 王耀明, 姜新建,等. 电动汽车永磁无刷直流电机驱动系统低速能量回馈制动的研究[J]. 电工技术学报, 1995, 9(3):28-31.
Huang Fei-li, Wang Yao-ming, Jiang Xin-jian, et al. Study on regenerative braking of permanent magnet brushless DC motor drive system at low speed for electric vehicles[J]. Transactions of China Electrotechnical Society, 1995, 9(3):28-31.
[7] 王昕, 姜继海. 轮边驱动液压混合动力车辆再生制动控制策略[J]. 吉林大学学报:工学版, 2009,39(6):1544-1549.
Wang Xin, Jiang Ji-hai. Regenerative braking control strategy for wheel drive hydraulic hybrid vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(6): 1544-1549.
[8] 何仁, 陈庆樟. 用双开关磁阻电机的汽车能量再生制动技术[J]. 吉林大学学报:工学版, 2009, 39(5):1137-1141.
He Ren, Chen Qing-zhang.The control strategy of energy regeneration for electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(5):1137-1141.
[9] 林海, 何瑞玲, 周海森,等. 三相无刷直流电机改进型脉宽调制策略[J]. 电力系统及其自动化学报, 2013, 25(6):79-83.
Lin Hai, He Rui-ling, Zhou Hai-sen, et al. Improved PWM scheme for permanent magnet brushless DC motor drives[J]. Proceedings of the CSU-EPSA, 2013, 25(6):79-83.
[10] 徐庆宏, 戴先中. 基于在线学习RBF神经网络的汽门开度自适应补偿控制方法[J]. 电机与控制学报, 2010, 14(2):13-19.
Xu Qing-hong, Dai Xian-zhong. Online learning RBF neural network-based adaptive compensative control scheme for governor system[J].Electric Machines and Control, 2010, 14(2):13-19.
[11] 尹明, 李庚银, 张建成,等. 直驱式永磁同步风力发电机组建模及其控制策略[J]. 电网技术, 2007, 31(15):61-65.
Yin Ming, Li Geng-yin, Zhang Jian-cheng, et al. Modeling and control strategies of directly driven wind turbine with permanent magnet synchronous generator[J].Power System Technology, 2007, 31(15):61-65.
[12] 韩红桂, 乔俊飞, 薄迎春. 基于信息强度的RBF神经网络结构设计研究[J]. 自动化学报, 2012, 38(7):1083-1090.
Han Hong-gui, Qiao Jun-fei, Bo Ying-chun. On structure design for RBF neural network based on information strength[J]. Acta Automatica Sinica, 2012, 38(7):1083-1090.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!