吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 893-902.doi: 10.13229/j.cnki.jdxbgxb20170299
杨东升1, 张展1,2, 廉梦佳1,2, 王丽娜1,2
YANG Dong-sheng1, ZHANG Zhan1,2, LIAN Meng-jia1,2, WANG Li-na1,2
摘要: 针对现有匹配二进制特征搜索算法效率低和入围点少的问题,提出了快速计算位图算法和位图局部敏感哈希算法。首先,计算左图提取的二进制特征的位向量;然后,使用快速计算位图算法计算位向量的位图,将位图作为关键字,并与二进制特征的标识作为映射,构建局部敏感哈希表;接着,将哈希表中的关键字存入位集;最后,判断右图提取的二进制特征对应的位图是否存在于哈希表中,优化查询哈希表中的匹配二进制特征,提高匹配二进制特征的搜索效率和质量。实验证明:位图局部敏感哈希算法提高了二进制特征近邻搜索的效率、增加了入围点数。
中图分类号:
[1] Lowe D G.Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91-110. [2] 聂海涛,龙科慧,马军,等. 基于快速SIFT算法和模糊控制的人脸识别[J]. 吉林大学学报:工学版,2016,46(2):549-555. Nie Hai-tao,Long Ke-hui,Ma Jun,et al.Face recognition based on fast scale invariant feature algorithm and fuzzy control[J]. Journal of Jilin University (Engineering and Technology Edition),2016,46(2):549-555. [3] Bay H,Ess A,Tuytelaars T,et al.Speeded-up robust features (surf)[J]. Computer Vision and Image Understanding,2008,110(3):346-359. [4] 郭清达,全燕鸣,姜长城,等. 应用摄像机位姿估计的点云初始配准[J]. 光学精密工程,2017,25(6):1635-1651. Guo Qing-da,Quan Yan-ming,Jiang Chang-cheng,et al.Initial registration of point clouds using camera pos estimation[J]. Optics and Precision Engineering,2017,25(6):1635-1651. [5] Calonder M, Lepetit V, Strecha C,et al.BRIEF:binary robust independent elementary features[J/OL].[2017-03-22].http:∥icwww.epfl.ch/~lepetit/papers/calonder_eccv10.pdf. [6] Rublee E, Rabaud V, Konolige K, et al.ORB:an efficient alternative to SIFT or SURF[J/OL].[2017-03-25].http:∥www.cs.zju.edu.cn/~gpan/course/materials/ORB.pdf. [7] Leutenegger S, Chli M, Siegwart R Y.BRISK: binary robust invariant scalable keypoints[J/OL].[2017-03-23].http:∥www.robots.ox.ac.uk/~vgg/rg/papers/brisk.pdf. [8] Alahi A, Ortiz R, Vandergheynst P.FREAK:fast retina keypoint[J/OL].[2017-03-24].https:∥infoscience.epfl.ch/record/175537/files/2069.pdf. [9] 张展,杨东升. 圆周二进制描述符的图像点特征提取方法[J]. 计算机辅助设计与图形学学报,2017,29(8):1465-1476. Zhang Zhan,Yang Dong-sheng.Image point feature extraction algorithm of circumferential binary descriptor[J]. Journal of Computer-Aided Design & Computer Grphics,2017,29(8):1465-1476. [10] Richard Szeliski.计算机视觉-算法与应用[M]. 艾海舟,兴军亮译. 北京:清华大学出版社,2012:175-176. [11] Indyk P, Motwani R.Approximate nearest neighbor: towards removing the curse of dimensionality[J/OL].[2017-03-23].http:∥www.cs.princeton.edu/courses/archive/spr04/cos598B/bib/IndykM-curse.pdf. [12] Lv Qin, Josephson William, Wang Zhe, et al. Multi-probe LSH: efficient indexing for high-dimensional similarity search[J/OL].[2017-03-24]. http://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf. [13] Kong Wei-hao,Li Wu-jun,Guo Min-yi.Manhattan hashing for large-scale image retrieval[C]∥Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA,2012:45-54. [14] Shrivastave Anshumali, Li Ping.Densifying one permutation hashing via rotation for fast near neighbor search[J/OL].[2017-03-23].http:∥proceedings.mlr.press/v32/shrivastava14.pdf. [15] Lin Guo-sheng,Shen Chun-hua,Shi Qin-fen,et al.Fast supervised hashing with decision trees for high-dimensional data[C]∥IEEE Conference on Computer Vision& Pattern Recognition, Columbus, OH, USA, 2014:1971-1978. [16] Liong Venice Erin, Lu Ji-wen, Wang Gang, et al.Deep hashing for compact binary codes learning[J/OL]. [2017-03-23].https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liong_Deep_Hashing_for_2015_CVPR_paper.pdf. [17] Lin Kevin, Yang Huei-fang, Hsiao Jen-hao, et al.Deep learning of binary hash codes for fast image retrieval[J/OL].[2017-03-22].http:∥www.iis.sinica.edu.tw/~kevinlin311.tw/cvprw15.pdf. [18] Norouzi M, Fleet D J.Minimal loss hashing for compact binary codes[C]∥Proceedings of the 28th International Conference on Machine Learning, Bellevue, Washington, USA,2011:353-360. [19] Norouzi M, Punjani A, Fleet D J.Fast search in hamming space with multi-index hashing[J/OL].[2017-03-25].https:∥www.cs.toronto.edu/~norouzi/research/papers/multi_index_hashing.pdf. [20] Muja M, Lowe D G.Fast matching of binary features[C]∥2012 Ninth Conference on Computer and Robot Vision, Toronto, ON, Canada,2012:404-410. [21] Muja M, Lowe D G.Scalable nearest neighbor algorithms for high dimensional data[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,36(11):2227-2240. [22] Garcia-Molina H, Ullman J D, Widom J.数据库系统实现[M]. 杨冬青,吴愈青,包小源译. 2版. 北京:机械工业出版社,2010:688-693. [23] Mikolajczyk K, Schmid C.A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis &Machine Intelligence,2005,27(10):1615-1630. [24] 邹瑜,梁斌,王学谦,等. 基于旋转投影二进制描述符的空间目标位姿估计[J]. 光学精密工程,2017,25(11):2958-2967. Zou Yu,Liang Bin,Wang Xue-qian,et al.Spacetarget pose estimation based on binary rotational projection histogram[J]. Optics and Precision Engineering,2017,25(11):2958-2967. [25] 崔少辉,谢征,王刚,等. 二进制鲁棒不变尺度特征匹配电子稳像[J]. 光学精密工程,2015,23(9):2715-2723. Cui Shao-hui,Xie Zheng,Wang Gang,et al.Feature matching electronic image stabilization based on binary robust in variant scalable keypionts[J]. Optics and Precision Engineering,2015,23(9):2715-2723. [26] 罗家祥,林畅赫,王加朋,等.结合深度卷积网络与加速鲁棒特征配准的图像精准定位[J].光学精密工程,2017,25(2):469-476. Luo Jia-xiang,Lin Chang-he,Wang Jia-peng,et al.Accurate image positioning combining deep convolution network with SURF registering[J]. Optics and Precision Engineering,2017,25(2):469-476. [27] 熊昌镇,单艳梅,郭芬红.结合主体检测的图像检索方法[J].光学精密工程,2017,25(3):792-798. Xiong Chang-zhen, Shan Yan-mei, Guo Fen-hong.Image retrieval method based on image principal part detection[J]. Optics and Precision Engineering,2017,25(3):792-798. |
[1] | 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850. |
[2] | 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858. |
[3] | 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866. |
[4] | 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872. |
[5] | 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878. |
[6] | 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570. |
[7] | 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599. |
[8] | 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605. |
[9] | 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613. |
[10] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
[11] | 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
[12] | 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230. |
[13] | 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236. |
[14] | 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243. |
[15] | 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253. |
|