吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 919-928.doi: 10.13229/j.cnki.jdxbgxb20170784

• 论文 • 上一篇    下一篇

基于量子细胞神经网络超混沌的视频加密方法

底晓强1,2, 王英政1, 李锦青1,2, 从立钢1,2, 祁晖1,2   

  1. 1.长春理工大学 计算机科学技术学院,长春 130022;
    2. 吉林省网络与信息安全重点实验室,长春 130022;
  • 收稿日期:2017-08-01 出版日期:2018-05-20 发布日期:2018-05-20
  • 作者简介:底晓强(1978-),男,副教授,博士生导师.研究方向:网络与信息安全.E-mail:dixiaoqiang@126.com
  • 基金资助:
    “863”国家高技术研究发展计划项目(2015AA015701); 吉林省科技发展计划项目(20150312030ZX); 吉林省产业创新专项基金项目(2016C087).

Video encryption method based on hyperchaos of quantum cellular neural networks

DI Xiao-qiang1,2, WANG Ying-zheng1, LI Jin-qing1,2, CONG Li-gang1,2, QI Hui1,2   

  1. 1.School of Computer Science and Technology,Changchun University of Science and Technology, Changchun 130022,China;
    2.Jilin Province Key Laboratory of Network and Information Security,Changchun 130022,China
  • Received:2017-08-01 Online:2018-05-20 Published:2018-05-20

摘要: 针对采用混沌视频加密算法后视频编码延迟大的问题,提出了一种H.264/AVC视频的快速安全加密算法。首先设计了密钥生成方案,由4维量子细胞神经网络迭代产生4组混沌序列,使用前3组混沌序列作为计算密钥的混沌序列池,后1组混沌序列作为Logistic混沌映射的初值以提高其初值的动态性。然后,利用Logistic混沌映射生成的索引从混沌序列池中选择用于生成密钥的序列组,避免了多次求解高维混沌系统,实现了密钥的快速生成。最后,本算法选择视频编码中的部分关键语法元素作为加密对象,减少了加密的数据量,对70帧的视频编码的延迟小于0.6%,通过密钥空间分析、NIST SP 800-22测试、已知明文攻击和推理攻击等实验分析表明,本文提出的视频加密算法具有密钥空间大、密钥随机性好、抗攻击性能强和安全强度高的优点。此外,算法不改变视频压缩比、符合视频编码格式规范,通过快速生成密钥和只加密视频关键语法元素有效地降低了H.264/AVC视频的加密延迟。

关键词: 计算机应用, 视频加密, H.264/AVC, 量子细胞神经网络

Abstract: To solve the large delay problem of video coding by using the chaotic encryption, a fast security encryption algorithm for H.264/AVC video is proposed. First, a key generation scheme is designed. Four groups of chaotic sequences are generated with four-dimensional Quantum Cellular neural Network (QCNN) iteration, the first three groups are used for chaotic sequence pool, and the other one is used to generate the initial value of the Logistic map to increase the dynamics of the initial value. Then, to avoid repeatedly solving the high dimensional chaotic systems, the sequence of the calculation key is selected from the chaotic sequence pool according to the index generated by the Logistic map. After calculation, the encryption key is obtained, which realizes the fast generation of the key. Finally, some key elements, such as partial sign bits and information bits in video coding, are effectively encrypted for reducing the amount of encrypted data. Experiments show that the proposed encryption algorithm for 70 frames of video coding delay is less than 0.6%. Through the key space analysis, NIST SP 800-22 test, known plaintext attack and inference attack experiment analysis, it is shown that the proposed video encryption algorithm has the advantages of large key space, good random key, strong attack resistance and high security. In addition, the algorithm does not change the video compression ratio to conform video encoding format specification. By quickly generating secure keys with only encrypting the key video syntax elements, the H.264/AVC video encryption delay is effectively reduced.

Key words: computer application, video encryption, H.264/AVC, quantum cellular neural network

中图分类号: 

  • TP301
[1] Liu F, Koenig H.A survey of video encryption algorithms[J]. Computers & Security, 2010, 29(1): 3-15.
[2] Ahn J, Shim H J, Jeon B, et al.Digital video scrambling method using intra prediction mode[C]∥Pacific-Rim Conference on Multimedia. Berlin:Springer, 2004: 386-393.
[3] 蒋建国, 邢世义, 包先雨. 一种用于H.264的视频加密方案[C]∥全国计算机技术与应用,合肥,中国,2008:525-531.
Jiang Jian-guo, Xing Shi-yi, Bao Xian-yu.A video encryption scheme for H.264[C]∥National Computer Technology and Applications,Hefei, China, 2008:525-531.
[4] Fan Yi-bo,Wang Ji-dong, Ikenaga T, et al.An unequal secure encryption scheme for H. 264/AVC video compression standard[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2008, 91(1): 12-21.
[5] Liu Z, Li X.Motion vector encryption in multimedia streaming[C]∥Multimedia Modelling Conference, 2004. Proceedings of 10th International, IEEE, Brisbane, Australia,2004: 64-71.
[6] Lian S, Sun J, Liu G, et al.Efficient video encryption scheme based on advanced video coding[J]. Multimedia Tools & Applications, 2008, 38(1):75-89.
[7] Shahid Z, Chaumont M, Puech W.Fast protection of H. 264/AVC by selective encryption of CAVLC and CABAC for I and P frames[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(5): 565-576.
[8] Wang Y, O'Neill M, Kurugollu F. A tunable encryption scheme and analysis of fast selective encryption for CAVLC and CABAC in H. 264/AVC[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(9): 1476-1490.
[9] Peng F, Gong X, Long M, et al.A selective encryption scheme for protecting H. 264/AVC video in multimedia social network[J]. Multimedia Tools and Applications, 2016,76(3):1-19.
[10] 田海江, 雷鹏, 王永,等. 基于混沌和DNA动态编码的图像加密算法[J]. 吉林大学学报:工学版, 2014, 44(3):801-806.
Tian Hai-jiang, Lei Peng, Wang Yong, et al.Image encryption algorithm based on chaos and DNA dynamic coding[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(3):801-806.
[11] 蒲鑫, 田小建, 王春民,等. 基于光纤混沌替代电路的图像加密方案[J]. 吉林大学学报:工学版, 2014, 44(1):270-275.
Pu Xin, Tian Xiao-jian, Wang Chun-min,et al.Image encryption scheme based on optical chaos replace circuit[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(1):270-275.
[12] Peng F, Zhu X, Long M.An ROI privacy protection scheme for H. 264 video based on FMO and Chaos[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(10): 1688-1699.
[13] Lent C S, Tougaw P D, Porod W, et al.Quantum cellular automata[J]. Nanotechnology, 1993, 4(1): 49.
[14] 蔡理, 马西奎, 王森. 量子细胞神经网络的超混沌特性研究[J]. 物理学报,2003,52(12): 3002-3006.
Cai Li, Ma Xi-kui, Wang Sen.Study on hyperchaos of quantum cellular neural networks[J]. Acta Physica Sinica, 2003, 52(12): 3002-3006.
[15] Porod W.Quantum-dot devices and quantum-dot cellular automata[J]. Journal of the Franklin Institute, 1997, 334(5/6): 1147-1175.
[16] 王宏霞,何晨. 细胞神经网络的动力学行为[J]. 物理学报, 2003, 52(10):2409-2414.
Wang Hong-xia, He Chen.Dynamic behavior of cellular neural networks[J]. Acta Physica Sinica, 2003, 52(10):2409-2414.
[17] Tan T K, Weerakkody R, Mrak M, et al.Video quality evaluation methodology and verification testing of HEVC compression performance[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(1): 76-90.
[18] Pareschi F, Rovatti R, Setti G.On Statistical tests for randomness included in the NIST SP800-22 test suite and based on the binomial distribution[J]. IEEE Transactions on Information Forensics & Security, 2012, 7(2):491-505.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何磊,宗长富,田承伟,吴仁军,张太武. 线控转向汽车直流电机的故障诊断与容错控制[J]. 吉林大学学报(工学版), 2011, 41(03): 608 -612 .
[2] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[3] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[4] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[5] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[6] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[7] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[8] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[9] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[10] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .