吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 936-942.doi: 10.13229/j.cnki.jdxbgxb20170346
蔡振闹1, 吕信恩2, 陈慧灵3
CAI Zhen-nao1, LYU Xin-en2, CHEN Hui-ling3
摘要: 基于改进的细菌优化算法(BFO)的支持向量机(SVM)提出了一种有效的智能预警模型(IBFO-SVM),并对社区矫正人员出现的躯体化障碍严重程度进行了预测。在IBFO-SVM 中,在细菌优化算法中引入反向学习策略,增加细菌种群的多样性,并使初始种群的个体尽可能均匀分布,提高BFO优化过程的收敛速度同时减少了BFO陷入局部最优解的概率。然后利用提出的反向细菌优化算法(IBFO)来确定SVM的两个最优参数(惩罚系数和核宽)。最后,将IBFO-SVM模型与基于原始细菌优化的SVM模型(BFO-SVM)、基于遗传算法的SVM模型(GA-SVM)以及基于粒子群优化算法的SVM模型(PSO-SVM)在心理评测数据上通过10折交叉验证方法进行了比较。实验结果表明:提出的IBFO-SVM预测模型在分类准确率、马修斯相关系数(MCC)、灵敏度和特异性方面比其他方法具有更好的性能,可以很好地将重度躯体化障碍和轻度躯体化障碍进行诊断。
中图分类号:
[1] 刘怡桐. 大学生五态人格和心理健康的相关性研究[D]. 北京:北京中医药大学,2011. Liu Yi-tong.Correlation study between five-pattern personality and mental health of college Students[D]. Beijing University of Chinese Medicine, 2011. [2] 时松和,冯邵珍,张智民,等.南水北调中老年移民心理干预效果分析[J].现代预防医学,2016,43(6):1051-1056. Shi Song-he,Feng Shao-zhen,Zhang Zhi-min, et al.Analysis of the effect of psychological intervention among middle-aged and elderly immigrants in South-to-North Water Transfer Project[J]. Modern Preventive Medicine, 2016, 43(6):1051-1056. [3] Boser B E, Guyon I M, Vapnik V N.A training algorithm for optimal margin classifiers[C]∥Proceedings of the fifth annual workshop on Computational learning theory,ACM, 1992: 144-152. [4] Vapnik V N.The nature of statistical learning theory[M]. New York: Springer, 2000: 138-167. [5] Aslahi-Shahri B M, et al. A hybrid method consisting of GA and SVM for intrusion detection system[J]. Neural Computing and Applications,2016,27(6): 1669-1676. [6] Chen P, Yuan L, He Y, et al.An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis[J]. Neurocomputing, 2016, 211:202-211. [7] Shahdoosti H R, Hazavei S M.Combined ripplet and total variation image denoising methods using twin support vector machines[J].Multimedia Tools & Applications, 2017 (12) :1-19. [8] Chen H L, Yang B, Liu J, et al.A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis[J]. Expert Systems with Applications, 2011, 38(7): 9014-9022. [9] Übeyli E D.Comparison of different classification algorithms in clinical decision-making[J]. Expert Systems, 2010, 24(1):17-31 [10] Chen H L, Yang B, Wang G, et al.A three-stage expert system based on support vector machines for thyroid disease diagnosis[J]. Journal of Medical Systems, 2012, 36(3):1953-1963. [11] Chen H L, Bo Y, Gang W, et al.Support vector machine based diagnostic system for breast cancer using swarm intelligence[J]. Journal of Medical Systems, 2012, 36(4):2505-2519. [12] Li M, Chen W, Zhang T.Automatic epilepsy detection using wavelet-based nonlinear analysis and optimized SVM[J]. Biocybernetics & Biomedical Engineering, 2016, 36(4): 708-718. [13] Ye F.Evolving the SVM model based on a hybrid method using swarm optimization techniques in combination with a genetic algorithm for medical diagnosis[J]. Multimedia Tools & Applications, 2016:1-30. [14] Keerthi S, Lin C.Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Computation, 2003,15(7):1667-1689. [15] Chang C C, Lin C J.LIBSVM: a library for support vector machines[M].ACM, 2011. [16] Gold C, Sollich P.Model selection for support vector machine classification[J]. Neurocomputing, 2003,55(1/2): 221-249. [17] Keerthi S.Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms[J]. IEEE Transactions on Neural Networks, 2002,13(5):1225-1229. [18] Chapelle O.Choosing multiple parameters for support vector machines[J].Machine Learning, 2002,46(1): 131-159. [19] Huang C L,Wang C J.A GA-based feature selection and parameters optimizationfor support vector machines[J]. Expert Systems with Applications, 2006: 31(2): 231-240. [20] Chen H L, Yang B, Wang S J, et al.Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy[J]. Applied Mathematics & Computation, 2014, 239(8):180-197. [21] Passino K M.Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine, 2002,22(3): 52-67. |
[1] | 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850. |
[2] | 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858. |
[3] | 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866. |
[4] | 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872. |
[5] | 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878. |
[6] | 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365. |
[7] | 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570. |
[8] | 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599. |
[9] | 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605. |
[10] | 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613. |
[11] | 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628. |
[12] | 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223. |
[13] | 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230. |
[14] | 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236. |
[15] | 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243. |
|