吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 936-942.doi: 10.13229/j.cnki.jdxbgxb20170346

• 论文 • 上一篇    下一篇

基于反向细菌优化支持向量机的躯体化障碍预测模型

蔡振闹1, 吕信恩2, 陈慧灵3   

  1. 1.西北工业大学 计算机学院,西安710072;
    2.温州大学 心理健康教育中心,浙江温州325035;
    3.温州大学 数理与电子信息工程学院,浙江 温州325035;
  • 收稿日期:2017-04-12 出版日期:2018-05-20 发布日期:2018-05-20
  • 通讯作者: 吕信恩(1983-), 男, 讲师, 硕士.研究方向:心理健康教育,心理测量.E-mail:luxinen@163.com
  • 作者简介:蔡振闹(1981-),男, 工程师, 博士研究生.研究方向:机器学习,数据挖掘.E-mail:erikcai@mail.nwpu.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(LY17F020012,Y14F020126); 温州市科技计划项目(ZG2017019).

Prediction model of somatization disorder based on an oppositional bacterial foraging optimization based support vector machine

CAI Zhen-nao1, LYU Xin-en2, CHEN Hui-ling3   

  1. 1.School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
    2.Mental Health Education Center, Wenzhou University, Wenzhou 325035, China;
    3.College of Mathematics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
  • Received:2017-04-12 Online:2018-05-20 Published:2018-05-20

摘要: 基于改进的细菌优化算法(BFO)的支持向量机(SVM)提出了一种有效的智能预警模型(IBFO-SVM),并对社区矫正人员出现的躯体化障碍严重程度进行了预测。在IBFO-SVM 中,在细菌优化算法中引入反向学习策略,增加细菌种群的多样性,并使初始种群的个体尽可能均匀分布,提高BFO优化过程的收敛速度同时减少了BFO陷入局部最优解的概率。然后利用提出的反向细菌优化算法(IBFO)来确定SVM的两个最优参数(惩罚系数和核宽)。最后,将IBFO-SVM模型与基于原始细菌优化的SVM模型(BFO-SVM)、基于遗传算法的SVM模型(GA-SVM)以及基于粒子群优化算法的SVM模型(PSO-SVM)在心理评测数据上通过10折交叉验证方法进行了比较。实验结果表明:提出的IBFO-SVM预测模型在分类准确率、马修斯相关系数(MCC)、灵敏度和特异性方面比其他方法具有更好的性能,可以很好地将重度躯体化障碍和轻度躯体化障碍进行诊断。

关键词: 计算机应用, 躯体化障碍, 支持向量机, 反向学习, 细菌优化算法

Abstract: The proposed Bacterial foraging optimization algorithm (BFO) based on support vector machine (SVM) presents an effective intelligent early-warning model (IBFO-SVM) for the somatization disorder severity prediction for Community Correction patients. In IBFO-SVM, opposition-based learning strategy is introduced into the BFO to increase the diversity of the bacterial population and uniformly distributed as far as possible for initial population, which improves the convergence rate of BFO and reduces the probability which falls into the local optimal solution. The proposed improved bacterial foraging optimization algorithm (IBFO) is used to determine the two optimal parameters of SVM (penalty coefficient and kernel width). For comparison purpose, the original BFO, genetic algorithm (GA), particle swarm optimization (PSO) has also been proposed to optimize the parameters of SVM. In this study, IBFO-SVM, BFO-SVM, GA-SVM and PSO-SVM model were compared by 10-fold cross-validation method in psychological evaluation data. The experimental results demonstrate that the proposed IBFO-SVM method has better performance in predicting the severe somatization disorder and mild somatization disorder in terms of classification accuracy, Mathews correlation coefficient (MCC), sensitivity and specificity than other methods.

Key words: computer application, somatization disorder, support vector machine, opposition-based learning, bacterial foraging algorithm

中图分类号: 

  • TP393
[1] 刘怡桐. 大学生五态人格和心理健康的相关性研究[D]. 北京:北京中医药大学,2011.
Liu Yi-tong.Correlation study between five-pattern personality and mental health of college Students[D]. Beijing University of Chinese Medicine, 2011.
[2] 时松和,冯邵珍,张智民,等.南水北调中老年移民心理干预效果分析[J].现代预防医学,2016,43(6):1051-1056.
Shi Song-he,Feng Shao-zhen,Zhang Zhi-min, et al.Analysis of the effect of psychological intervention among middle-aged and elderly immigrants in South-to-North Water Transfer Project[J]. Modern Preventive Medicine, 2016, 43(6):1051-1056.
[3] Boser B E, Guyon I M, Vapnik V N.A training algorithm for optimal margin classifiers[C]∥Proceedings of the fifth annual workshop on Computational learning theory,ACM, 1992: 144-152.
[4] Vapnik V N.The nature of statistical learning theory[M]. New York: Springer, 2000: 138-167.
[5] Aslahi-Shahri B M, et al. A hybrid method consisting of GA and SVM for intrusion detection system[J]. Neural Computing and Applications,2016,27(6): 1669-1676.
[6] Chen P, Yuan L, He Y, et al.An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis[J]. Neurocomputing, 2016, 211:202-211.
[7] Shahdoosti H R, Hazavei S M.Combined ripplet and total variation image denoising methods using twin support vector machines[J].Multimedia Tools & Applications, 2017 (12) :1-19.
[8] Chen H L, Yang B, Liu J, et al.A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis[J]. Expert Systems with Applications, 2011, 38(7): 9014-9022.
[9] Übeyli E D.Comparison of different classification algorithms in clinical decision-making[J]. Expert Systems, 2010, 24(1):17-31
[10] Chen H L, Yang B, Wang G, et al.A three-stage expert system based on support vector machines for thyroid disease diagnosis[J]. Journal of Medical Systems, 2012, 36(3):1953-1963.
[11] Chen H L, Bo Y, Gang W, et al.Support vector machine based diagnostic system for breast cancer using swarm intelligence[J]. Journal of Medical Systems, 2012, 36(4):2505-2519.
[12] Li M, Chen W, Zhang T.Automatic epilepsy detection using wavelet-based nonlinear analysis and optimized SVM[J]. Biocybernetics & Biomedical Engineering, 2016, 36(4): 708-718.
[13] Ye F.Evolving the SVM model based on a hybrid method using swarm optimization techniques in combination with a genetic algorithm for medical diagnosis[J]. Multimedia Tools & Applications, 2016:1-30.
[14] Keerthi S, Lin C.Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Computation, 2003,15(7):1667-1689.
[15] Chang C C, Lin C J.LIBSVM: a library for support vector machines[M].ACM, 2011.
[16] Gold C, Sollich P.Model selection for support vector machine classification[J]. Neurocomputing, 2003,55(1/2): 221-249.
[17] Keerthi S.Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms[J]. IEEE Transactions on Neural Networks, 2002,13(5):1225-1229.
[18] Chapelle O.Choosing multiple parameters for support vector machines[J].Machine Learning, 2002,46(1): 131-159.
[19] Huang C L,Wang C J.A GA-based feature selection and parameters optimizationfor support vector machines[J]. Expert Systems with Applications, 2006: 31(2): 231-240.
[20] Chen H L, Yang B, Wang S J, et al.Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy[J]. Applied Mathematics & Computation, 2014, 239(8):180-197.
[21] Passino K M.Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine, 2002,22(3): 52-67.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[7] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[8] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[9] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[10] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭孔辉;王爽;丁海涛;张建伟 . 后悬架非对称式橡胶衬套弹性耦合特性[J]. 吉林大学学报(工学版), 2007, 37(06): 1225 -1228 .
[2] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[3] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[4] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[5] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[6] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[7] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[8] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[9] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[10] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .