吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 1199-1205.doi: 10.13229/j.cnki.jdxbgxb20170600

• • 上一篇    下一篇

基于垂直维序列动态时间规整方法的图相似度度量

王旭1,2, 欧阳继红1,2, 陈桂芬3   

  1. 1.吉林大学 计算机科学与技术学院,长春130012;
    2.吉林大学 符号计算与知识工程教育部重点实验室,长春130012;
    3.吉林农业大学 信息技术学院,长春 130118
  • 收稿日期:2017-05-12 出版日期:2018-07-01 发布日期:2018-07-01
  • 通讯作者: 欧阳继红(1964-),女,教授,博士生导师.研究方向:数据挖掘,时空推理.E-mail:ouyj@jlu.edu.cn
  • 作者简介:王旭(1982-),男,博士研究生.研究方向:数据挖掘,图挖掘.E-mail:xuwang10@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61472157,61602204,61402195).

Measurement of graph similarity based on vertical dimension sequence dynamic time warping method

WANG Xu1,2, OUYANG Ji-hong1,2, CHEN Gui-fen3   

  1. 1.College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China;
    3.College of Information Technology, Jilin Agricultural University, Changchun 130118, China
  • Received:2017-05-12 Online:2018-07-01 Published:2018-07-01

摘要: 针对图相似度度量过程中复杂度高、信息缺失的问题,采用将图转换为广义树,将广义树表示为垂直维序列的方法,通过计算垂直维序列的距离度量图的相似度。该方法把度量图相似度的问题简化为计算垂直维序列距离的问题。垂直维序列不仅包含了顶点标号、入度和出度信息,而且体现了顶点的层次结构特性,保留了图中的路径信息。与现有方法相比,该方法在度量过程中考虑了更多的图信息,并将时间复杂度降至O(n2)。

关键词: 人工智能, 图相似度度量, 动态时间规整, 垂直维序列, 距离计算, 时间复杂度

Abstract: To solve the problems of high complexity and information loss in the process of measuring graph similarity, a method to calculate the distance of vertical dimensional sequences is proposed, which is used to measure graph similarity. Using this method, the graph is converted into the generalized tree, which is regarded as the vertical dimensional sequences. This method simplifies the graph similarity measurement to the distance calculation of the sequences. The vertical dimensional sequences not only obtain labels, in-degrees and out-degrees information of vertices, reflect level structural property of vertices, but also reserve the path information of graph. Compared with the existing graph similarity methods, this method involves more graph information in the process of graph similarity measurement, and decreases the time complexity to O(n2).

Key words: artificial intelligence, graph similarity measure, dynamic time warping, vertical dimensional sequences, distance calculating, time complexity

中图分类号: 

  • TP18
[1] Ahmed A, Shervashidze N, Narayanamurthy S, et al.Distributed large-scale natural graph factorization[C]∥22nd International Conference on World Wide Web, Rio de Janeiro, Brazil,2013:37-48.
[2] Shanavas N, Wang H, Lin Z, et al.Supervised graph-based term weighting scheme for effective text classification[C]∥Proceedings of the 22nd European Conference on Artificial Intelligence, Hague, Netherlands, 2016: 1710-1711.
[3] Macropol K,Singh A.Reachability analysis and modeling of dynamic event networks[C]∥European Conference of Machine Learning and Knowledge Discovery in Databases, Bristol, UK, 2012: 442-457.
[4] Sugiyama M, Llinares F, Kasenburg N, et al.Significant subgraph mining with multiple testing correction[C]∥Proceedings of the SIAM International Conference on Data Mining, Vancouver, Canada, 2015: 37-45.
[5] Vishwanathan S, Schraudolph N, Kondor R, et al.Graph kernels[J]. Journal of Machine Learning Research, 2010, 11:1201-1242.
[6] Sugiyama M, Borgwardt K.Halting in random walk kernels[C]∥28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 1639-1647.
[7] Borgwardt K, Kriegel H.Shortest-path kernels on graphs[C]∥Proceedings of IEEE International Conference on Data Mining, Houston, USA, 2005: 74-81.
[8] Elzinga C, Wang H.Kernels for acyclic digraphs[J]. Pattern Recognition Letters, 2012, 33(16): 2239-2244.
[9] Forster D, Bittner L, Karkar S, et al. Testing ecological theories with sequence similarity networks: marine ciliates exhibit similar geographic dispersal patterns as multicellular organisms[J].BMC Biology, 2015, 13: doi: 10.1186/s12915-015-0125-5.
[10] Yanardag P, Vishwanathan S.A structural smoothing framework for robust graph comparison[C]∥Proceedings of Neural Information Processing Systems, Montreal, Canada, 2015: 2134-2142.
[11] Shervashidze N, Schweitzer P, Leeuwen E, et al.Weisfeiler-Lehman graph kernels[J].Journal of Machine Learning Research, 2011, 12: 2539-2561.
[12] Yanardag P, Vishwanathan S.Deep graph kernels[C]∥Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 2015: 1365-1374.
[13] Sakoe H, Chiba S.Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43-49.
[14] Kurbalija V, Radovanovic M, Geler Z, et al.The influence of global constraints on similarity measures for time-series databases[J].Knowledge-Based Systems, 2014, 56: 49-67.
[15] Wang Q, Korkin D, Shang Y.A fast multiple longest common subsequence(MLCS) algorithm[J].IEEE Transactions on Knowledge and Data Engineering, 2011, 23(3): 321-334.
[16] Wang H.All common subsequences[C]∥Proceeding 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 2007: 635-640.
[17] Lin Z, Wang H, McClean S. A multidimensional sequence approach to measuring tree similarity[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(2): 197-208.
[18] Li Tao, Dong Han, Shi Yong-tang, et al.A comparative analysis of new graph distance measures and graph edit distance[J]. Information Sciences, 2017, 403: 15-21.
[19] Zhu Gang-gao, Iglesias C.Computing semantic similarity of concepts in knowledge graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(1): 72-85.
[1] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[2] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[3] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[4] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[5] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[6] 刘杰, 张平, 高万夫. 基于条件相关的特征选择方法[J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[7] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[8] 杨欣, 夏斯军, 刘冬雪, 费树岷, 胡银记. 跟踪-学习-检测框架下改进加速梯度的目标跟踪[J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[9] 刘雪娟, 袁家斌, 许娟, 段博佳. 量子k-means算法[J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[10] 曲慧雁, 赵伟, 秦爱红. 基于优化算子的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[11] 李嘉菲, 孙小玉. 基于谱分解的不确定数据聚类方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[12] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[13] 王生生, 王创峰, 谷方明. OPRA方向关系网络的时空推理[J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
[14] 马淼, 李贻斌. 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
[15] 周炳海, 彭涛. 混流装配线准时化物料配送调度优化[J]. 吉林大学学报(工学版), 2017, 47(4): 1253-1261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何磊,宗长富,田承伟,吴仁军,张太武. 线控转向汽车直流电机的故障诊断与容错控制[J]. 吉林大学学报(工学版), 2011, 41(03): 608 -612 .
[2] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[3] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[4] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[5] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[6] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[7] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[8] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[9] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[10] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .