吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (4): 1063-1071.doi: 10.13229/j.cnki.jdxbgxb20180530

• • 上一篇    

高温老化对CFRP/铝合金粘接接头失效的影响

秦国锋1,2(),那景新1(),慕文龙1,谭伟1,栾建泽1,申浩1   

  1. 1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    2. 广西师范大学 职业技术师范学院,广西 桂林 541004
  • 收稿日期:2018-05-27 出版日期:2019-07-01 发布日期:2019-07-16
  • 通讯作者: 那景新 E-mail:qinguofengjlu@163.com;najx@jlu.edu.cn
  • 作者简介:秦国锋(1990?),男,博士研究生. 研究方向:车身结构设计理论与轻量化技术. E?mail:qinguofengjlu@163.com
  • 基金资助:
    国家自然科学基金项目(51775230);吉林大学研究生创新基金项目(101832018C198)

Degradation failure of adhesively bonded CFRP/aluminum alloy subjected to high temperature environment

Guo⁃feng QIN1,2(),Jing⁃xin NA1(),Wen⁃long MU1,Wei TAN1,Jian⁃ze LUAN1,Hao SHEN1   

  1. 1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2. Teachers College for Vocational and Technical Education, Guangxi Normal University, Guilin 541004,China
  • Received:2018-05-27 Online:2019-07-01 Published:2019-07-16
  • Contact: Jing?xin NA E-mail:qinguofengjlu@163.com;najx@jlu.edu.cn

摘要:

为了揭示碳纤维增强复合材料(CFRP)/铝合金粘接接头在高温环境中的老化失效规律,加工了处于剪应力、拉应力和拉剪组合应力状态的粘接接头,在高温(80 ℃)环境中分别进行了10、20、30、40、50天的老化测试,分析了失效强度、失效模式的变化规律,建立了失效准则响应面。结果表明:随着拉应力比例的增加,失效强度下降更明显,下降趋势由二次多项式向线性转变,失效模式由内聚失效转变为内聚、纤维撕裂和界面失效的混合失效模式,这主要是由CFRP老化引起的;失效准则响应面平均误差为3.0%,能够对不同应力状态下的接头进行失效预测。因此,在粘接结构中降低拉应力比例能够提高承载能力,同时在失效预测时需要考虑不同应力状态的影响。

关键词: 车辆工程, 粘接接头, 高温老化, 失效规律

Abstract:

To reveal the degradation rules of adhesively bonded Carbon Fiber Reinforced Plastic (CFRP)/aluminum alloy subjected to high temperature environment, adhesive joints under shear, normal and combined shear and normal stress states were manufactured, and degraded at 80 ℃ (high temperature) for 10, 20, 30, 40, 50 days. The failure strength and failure mode were analyzed, and a response surface of failure criterion was built for the failure prediction. Results show that with increasing proportion of normal stress, the failure strength decreases more obviously and the failure mode changes from cohesive failure to mixed failure of fiber tear, interface and cohesive, which is mainly caused by the degradation of CFRP. The average relative errors of the response surface of failure criterion is about 3.0%, which can be used to predict the failure of adhesive joints under different stress states. Therefore, it is necessary to reduce the proportion of normal stress in adhesively bonded CFRP/aluminum alloy joints to improve the load capacity. Besides, the effect of fiber tear has to be taken into consideration in the failure prediction of CFRP/aluminum alloy joints.

Key words: vehicle engineering, adhesive joints, high temperature degradation, failure rule

中图分类号: 

  • U463.82

表1

CFRP材料属性"

Ex/GPaEy/GPaGxy/GPaνxy
单向125±1210±27±0.60.07
斜纹55±555±54±0.50.14

图1

粘接接头的几何尺寸"

图2

测试原理图"

图3

工装夹具"

图4

粘接接头失效强度随老化时间的变化规律"

图5

粘接接头失效强度随老化时间的拟合结果"

图6

TSJs不同老化周期后的典型失效断面"

图7

SJ45°不同老化周期后的典型失效断面"

图8

BJs不同老化周期后的典型失效断面"

图9

SEM纤维撕裂断面图"

图10

CFRP/铝合金粘接接头在不同老化周期后的失效准则"

图11

不同老化周期后的失效准则拟合精度"

图12

失效准则随着老化周期变化的响应面"

1 冯美斌. 汽车轻量化技术中新材料的发展及应用[J]. 汽车工程, 2006, 28(3): 213⁃220.
FengMei⁃bin. Development and applications of new materials in automotive light weighting technologies[J]. Automotive Engineering, 2006, 28(3): 66⁃72.
2 ElmarakbiA. Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness[M]. New York: Wiley, 2013.
3 SakundariniN, TahaZ, Abdul⁃RashidS H, et al. Optimal multi/material selection for lightweight design of automotive body assembly incorporating recyclability[J]. Materials and Design, 2013, 50:846⁃857.
4 SilvaL F M D, ÖchsnerA, AdamsR D. Handbook of Adhesion Technology NOVA[M]. Newcastle: The University of Newcastle's Digital Repository, 2011.
5 VianaG, CostaM, BaneaM D, et al. A review on the temperature and moisture degradation of adhesive joints[J]. Journal of Materials: Design and Applications, 2017, 231(5): 488⁃501.
6 MarquesE A S, Da SilvaL F M, BaneaM D, et al. Adhesive joints for low⁃ and high⁃temperature use: an overview[J]. Journal of Adhesion, 2014, 91(7): 556⁃585.
7 PlazekD J, FrundZ N, FrundJ Z N, et al. Epoxy resins (DGEBA): the curing and physical aging process[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1990, 28(4): 431⁃448
8 BuchX, ShanahanM E R. Influence of the gaseous environment on the thermal degradation of a structural epoxy adhesive[J]. Journal of Applied Polymer Science, 2000, 76(7): 987⁃992.
9 HancoxN L. Thermal effects on polymer matrix composites: part 2. thermal degradation[J]. Materials and Design, 1998, 19(3): 93⁃97.
10 LiM. Temperature and moisture effects on composite materials for wind turbine blades[D]. Bozeman: Montana State University, 2000.
11 SkourlisT P, McculloughR L. The effect of temperature on the behavior of the interphase in polymeric composites[J]. Composites Science and Technology, 1993, 49(4): 363⁃368.
12 NgS J, CramerR J, MehrkamP. Characterization of IM 7/8552 polymer composites subjected to heat damage[C]∥International SAMPE Technical Conference, London, UK, 1997, 29: 776⁃786.
13 WolfrumJ, EiblS, LietchL. Rapid evaluation of long⁃term thermal degradation of carbon fibre epoxy composites[J]. Composites Science and Technology, 2009, 69(3): 523⁃530.
14 MarquesE A S, Da SilvaL F M, BaneaM D, et al. Adhesive joints for low⁃and high⁃temperature use: an overview[J]. The Journal of Adhesion, 2015, 91(7): 556⁃585.
15 KhaliliS M R, SharafiM, Eslami⁃FarsaniR, et al. Effect of thermal cycling on tensile properties of degraded FML to metal hybrid joints exposed to sea water[J]. International Journal of Adhesion and Adhesives, 2017, 79(2): 95⁃101.
16 BaneaM D, DaS L F M. The effect of temperature on the mechanical properties of adhesives for the automotive industry[J]. Journal of Materials: Design and Applications, 2010, 224(2): 51⁃62.
17 QinGuo⁃feng, NaJing⁃xin, MuWen⁃long, et al. Effect of continuous high temperature exposure on the adhesive strength of epoxy adhesive, CFRP and adhesively bonded CFRP⁃aluminum alloy joints[J]. Composites Part B: Engineering, 2018, 154: 43⁃55.
18 DaS L F M, AdamsR D. Joint strength predictions for adhesive joints to be used over a wide temperature range [J]. International Journal of Adhesion and Adhesives 2007, 27(5): 362⁃379.
19 LeeM, YeoE, Black LockM, et al. Predicting the strength of adhesively bonded joints of variable thickness using a cohesive element approach[J]. International Journal of Adhesion and Adhesives, 2015, 58(1): 44⁃52.
[1] 李静,石求军,刘鹏,户亚威. 基于纵向车速估算的商用车ABS神经网络滑模控制[J]. 吉林大学学报(工学版), 2019, 49(4): 1017-1025.
[2] 杨顺,蒋渊德,吴坚,刘海贞. 基于多类型传感数据的自动驾驶深度强化学习方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1026-1033.
[3] 陈鑫,李铭,阮新建,王宁,王佳宁. 基于浸入单元法和延迟分离涡模型的Ahmed车模尾流涡旋结构[J]. 吉林大学学报(工学版), 2019, 49(4): 1034-1042.
[4] 周华,杨志刚,朱晖. 基于整车风洞试验的MIRA车型数值计算[J]. 吉林大学学报(工学版), 2019, 49(4): 1043-1053.
[5] 柳润东,毛军,郗艳红,张宏宇,彭飞. 横风下高速列车会车压力波对风障的气动冲击[J]. 吉林大学学报(工学版), 2019, 49(4): 1054-1062.
[6] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[7] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[8] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[9] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[10] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[11] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[12] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[13] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[14] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[15] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!