吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (5): 1339-1348.doi: 10.13229/j.cnki.jdxbgxb20170860

• • 上一篇    下一篇

混流集成式电池组热管理温均特性增效仿真

王炎1,2, 高青1,2, 王国华1,2, 张天时1,2, 苑盟1   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.吉林大学 汽车工程学院,长春130022
  • 收稿日期:2017-08-16 出版日期:2018-09-20 发布日期:2018-12-11
  • 通讯作者: 王国华(1978-),男,讲师,博士.研究方向:新能源汽车能源高效利用与集成式热管理.E-mail:wanggh@jlu.edu.cn
  • 作者简介:王炎(1988-),女,博士研究生.研究方向:电池热安全技术与新能源汽车整车热管理.E-mail:wangyan2387@163.com
  • 基金资助:
    国家自然科学基金项目(51376079);吉林省产业创新专项项目(2016C022);长春市科技创新“双十工程”项目(17SS022);吉林省科技发展计划项目(20180520066JH)

Simulation of mixed inner air-flow integrated thermal management with temperature uniformity of Li-ion battery

WANG Yan1,2, GAO Qing1,2, WANG Guo-hua1,2, ZHANG Tian-shi1,2, YUAN Meng1   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.College of Automotive Engineering, Jilin University, Changchun 130022, China
  • Received:2017-08-16 Online:2018-09-20 Published:2018-12-11

摘要: 电池组内良好的温度一致性是保证电动汽车切实可靠运行的必备条件,为了强化换热,减小组内温度差异性,本文提出了在电池模组内加设风扇的混流集成式电池组热管理方案。通过仿真计算,分析对比了单一液流与集成式两种热管理方式电池的温降性和温均性,以温度相异系数和温度极差为标准,分析评价了风扇气动性强化和装配高度对电池组温均性的改善效果。仿真结果表明:随着风扇气动特性强化,组内温度一致性得到了有效改善,为了强化末端换热和改善液流板下置的传热延迟,风扇应优先装配在高位。本文提出的混流集成式电池热管理方案具有良好的温均增效性,利于保证电池寿命和电动汽车整车性能。

关键词: 车辆工程, 混流, 电池热管理, 风扇气动性, 装配高度

Abstract: Large temperature difference can deteriorate the reliable operation of electric vehicle and battery cycle life. So it is essential to improve the temperature uniformity of battery pack. To enhance the heat transfer and reduce the temperature difference in a battery pack, a mixed inner air-flow Integrated Thermal Management (ITM) method is proposed by employing a small size axial fan. The performance of temperature control and temperature uniformity of single liquid Thermal Management (TM) and mixed inner air-flow ITM are analyzed and compared by Computational Fluid Dynamics (CFD). Furthermore, simulation on the thermal characteristic synergy of the mixed inner air-flow ITM is conducted by altering the aerodynamic characteristics and the position of the fan. Results show that the proposed method can effectively improve the temperature uniformity, thus enhancing the battery cycle life and the total performance of electric vehicle.

Key words: vehicle engineering, mixed inner flow, battery thermal management, fan aerodynamic characteristics, assembly position

中图分类号: 

  • U469.72
[1] Esmaeili J, Jannesari H.Developing heat source term including heat generation at rest condition for Lithiumion battery pack by up scaling information from cell scale[J]. Energy Conversion & Management, 2017, 139:194-205.
[2] Dong J, Su L, Chen Q, et al.Experimental study on thermal-hydraulic performance of a wavy fin-and-flat tube aluminum heat exchange[J]. Applied Thermal Engineering, 2013, 51(1/2):32-39.
[3] Williford R E, Viswanathan V V, Zhang J G.Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries[J]. Journal of Power Sources, 2009, 189(1):101-107.
[4] 常国峰, 陈磊涛, 许思传. 动力蓄电池风冷热管理系统的研究[J].汽车工程,2011,33(10):890-893.
Chang Guo-feng,Chen Lei-tao,Xu Si-chuan.A study on the air cooling thermal management system of power battery package[J]. Automotive Engineering,2011, 33(10): 890-893.
[5] Tao L, Ma J, Cheng Y, et al.A review of stochastic battery models and health management[J]. Renewable & Sustainable Energy Reviews, 2017, 80:716-732.
[6] Zhang S, Wu W, Wang S.Preparation, thermal properties and thermal reliability of a novel mid-temperature composite phase change material for energy conservation[J]. Energy, 2017, 130:228-235.
[7] Zhang X, Chang X, Shen Y.Electrochemical electrical thermal modeling of a pouch-type lithium ion battery: an application to optimize temperature distribution[J]. Journal of Energy Storage, 2017, 11:249-257.
[8] Zhang P, Yan F, Du C.A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics[J]. Renewable & Sustainable Energy Reviews, 2015, 48:88-104.
[9] Cuma M U, Koroglu T.A comprehensive review on estimation strategies used in hybrid and battery electric vehicles[J]. Renewable & Sustainable Energy Reviews, 2015, 42:517-531.
[10] Rao Z, Wang S, Wu M, et al.Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion & Management, 2013, 65:92-97.
[11] Wang Q, Jiang B, Xue Q F, et al.Experimental investigation on EV battery cooling and heating by heat pipes[J]. Applied Thermal Engineering, 2015, 88:54-60.
[12] Sabbah R, Kizilel R, Selman J R, et al.Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2008, 182(2):630-638.
[13] Chen K, Wang S, Song M, et al.Structure optimization of parallel air-cooled battery thermal management system[J]. International Journal of Heat & Mass Transfer, 2017, 111:943-952.
[14] Rao Z H, Zhang G Q.Thermal properties of paraffin wax-based composites containing graphite[J]. Energy Sources, 2011, 33(7):587-593.
[15] Cho G Y, Choi J W, Park J H, et al.Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles[J]. International Journal of Automotive Technology, 2014, 15(5):795-803.
[16] Wu W, Yang X, Zhang G, et al.Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J]. Energy Conversion & Management, 2017, 138:486-492.
[17] Burban G, Ayel V, Alexandre A, et al.Experimental investigation of a pulsating heat pipe for hybrid vehicle applications[J]. Applied Thermal Engineering, 2013, 50:94-103.
[18] Shi S, Xie Y, Li M, et al.Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials[J]. Energy Conversion & Management, 2017, 138:84-96.
[19] Azizi Y, Sadrameli S M.Thermal management of a LiFePO4, battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates[J]. Energy Conversion & Management, 2016, 128:294-302.
[20] Zhang T, Gao Q, Wang G, et al.Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process[J]. Applied Thermal Engineering, 2017, 116:655-662.
[21] 裴锋, 符兴锋. 基于风冷模式的18650动力电池系统安全性设计研究[J]. 汽车技术, 2015(8):48-55.
Pei Feng, Fu Xing-feng.A research on safety design of 18650 power battery system based on air cooling mode[J]. Automobile Technology,2015(8):48-55.
[22] Khateeb S A, Amiruddin S, Farid M, et al.Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation[J]. Journal of Power Sources, 2005, 142(1):345-353.
[23] Wu M, Hung Y, Wang Y, et al.Heat dissipation behavior of the nickel/metal hydride battery[J]. Journal of the Electrochemical Society, 2000, 147(3):930-935.
[24] Wang S, Li Y, Li Y Z, et al.A forced gas cooling circle packaging with liquid cooling plate for the thermal management of Li-ion batteries under space environment[J]. Applied Thermal Engineering, 2017,123:929-939.
[25] 施尚, 余建祖, 谢永奇,等. 锂电池相变材料/风冷综合热管理系统温升特性[J]. 北京航空航天大学学报, 2017, 43(6):1278-1286.
Shi Shang, Yu Jian-zu, Xie Yong-qi, et al.Temperature rise characteristic of lithium battery integrated thermal management system combining phase change materials with air cooling[J] Journal of Beijing University of Aeronautics and Astronautics,2017, 43(6):1278-1286.
[26] 李斌, 常国峰, 林春景,等. 车用动力锂电池产热机理研究现状[J]. 电源技术, 2014, 38(2):378-381.
Li Bin, Chang Guo-feng, Lin Chun-jing, et al.Research on heat generate mechanism of Li-ion batteries for electric vehicles[J]. Chinese Journal of Power Sources, 2014, 38(2):378-381.
[27] 匡勇, 刘霞, 钱振,等. 锂离子电池产热特性理论模型研究进展[J]. 储能科学与技术, 2015, 4(6):599-608.
Kuang Yong, Liu Xia, Qian Zhen, et al.Review on heat generation theory model of lithium-ion battery[J]. Energy Storage Science and Technology, 2015, 4(6):599-608.
[28] 常小幻. 锂离子电池产热特性和散热管理的研究[D]. 成都:电子科技大学材料与能源学院, 2016.
Chang Xiao-huan.Research on heat generation and the thermal management of the lithium-ion battery[D]. Chengdu:School of Energy Science and Engineering,University of Electronic Science and Technology of China,2016.
[29] Park C, Jaura A K.Dynamic thermal model of Li-ion battery for predictive behavior in hybrid and fuel cell vehicles[J]. SAE Transactions, 2003, 112:1835-1842.
[30] 张天时, 宋东鉴, 高青,等. 动力电池组扁管束液流热管理增效[J]. 吉林大学学报:工学版, 2017, 47(4):1032-1039.
Zhang Tian-shi, Song Dong-jian, Gao Qing, et al.Promotive effect on thermal management of power battery pack with liquid flow and flat tube bank[J]. Journal of Jilin University(Engineering and Technology Edition), 2017,47(4):1032-1039.
[31] 闵德平. 电池组结构设计及其热管理液流传热强化研究[D]. 长春:吉林大学汽车工程学院, 2016.
Min De-ping.Enhanced heat transfer on thermal management of hydronic battery packing[D]. Changchun:College of Automotive Engineering, Jilin University,2016.
[32] Kowal J, Arzberger A, Blanke H, et al.How to determine the time for temperature equalisation in batteries and supercaps for reliable laboratory measurements[J]. Journal of Energy Storage, 2015, 4:113-120.
[33] 张天时,宋东鉴,高青,等. 电动汽车动力电池液体冷却系统构建及其工作过程仿真[J].吉林大学学报:工学版,2018,48(2):387-397.
Zhang Tian-shi, Song Dong-jian, Gao Qing, et al.Construction of power battery liquid cooling system for electric vehicle and simulation of its working process[J] Journal of Jilin University(Engineering and Technology Edition),2018,48(2):387-397.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[11] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[12] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[13] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[14] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
[15] 于亮, 李和言, 马彪, 李慧珠, 李明阳. 多片离合器轴向平均比压的衰减特性[J]. 吉林大学学报(工学版), 2018, 48(4): 990-997.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .