吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (3): 910-916.doi: 10.13229/j.cnki.jdxbgxb20200203

• 交通运输工程·土木工程 • 上一篇    下一篇

基于静态半成套策略的多目标准时化物料配送调度

周炳海(),何朝旭   

  1. 同济大学 机械与能源工程学院,上海 201804
  • 收稿日期:2020-04-01 出版日期:2021-05-01 发布日期:2021-05-07
  • 作者简介:周炳海(1965-),男,教授,博士生导师. 研究方向:离散系统调度、建模与仿真.E-mail: bhzhou@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(71471135)

Static semi⁃kitting strategy⁃based multi⁃objective just⁃in⁃time material distribution scheduling

Bing-hai ZHOU(),Zhao-xu HE   

  1. College of Mechanical Engineering,Tongji University,Shanghai 201804,China
  • Received:2020-04-01 Online:2021-05-01 Published:2021-05-07

摘要:

针对混流装配线的准时化物料配送调度问题,提出了静态半成套供料策略。首先,对基于静态半成套供料策略的物料配送调度问题进行了描述,建立了以最小化总线边库存和总能源消耗为目标的多目标优化模型。然后,提出了一种改进的多目标引力搜索算法,该算法引入混沌引力算子和记忆搜索策略,加快了算法收敛速度并提高了种群多样性,此外建立了局部搜索优化算子对总能耗和总线边库存进行优化。最后,通过实验与标杆算法进行对比,结果验证了本文算法的可行性和有效性。

关键词: 计算机应用, 物料配送, 混流装配线, 准时化, 能源消耗, 多目标优化模型, 引力搜索算法

Abstract:

In order to solve the Just-in-Time (JIT) material distribution scheduling problem for mixed-model assembly lines, a static semi-kitting strategy is presented. First, the material distribution scheduling problem based on the static semi-kitting strategy is described and a multi-objective optimization model is established to minimize the Total Energy Cost (TEC) and the Total Line-side Inventory (TLI). Then, an improved multi-objective gravitational search algorithm is proposed. The chaotic gravitation operator and the memory search strategy are introduced to the proposed algorithm to accelerate the convergence speed and increase the population diversity. In addition, a local search optimization operator is constructed to optimize the TEC and the TLI. Finally, the experimental results prove the feasibility and effectiveness of the proposed algorithm by comparing with benchmark algorithms.

Key words: computer application, material distribution, mixed-model assembly lines, Just-in-Time, energy cost, multi-objective optimization model, gravitational search algorithm

中图分类号: 

  • TP39

图1

静态半成套策略系统布局图"

图2

MMCGSA中粒子编码方式"

图3

MMCGSA算法流程图"

表1

算法参数"

算法参数问题规模

MMCGSA

种群数量100100100
初始引力常数111
惯性因子0.40.40.8
局部搜索次数5510
最大迭代次数200250300
MOPSO种群数量100100100
学习因子0.70.70.7
惯性权重范围[0.2,0.65][0.2,0.8][0.2,0.9]
速度范围[-0.1,0.1][-0.1,0.1][-0.1,0.1]
最大迭代次数200250300
NSGA-II种群数量100100100
交叉率0.50.550.6
变异率0.10.150.2
最大迭代次数200250300

表2

不同算法对比结果"

规模组别DPOESIGD
MMCGSAMOPSONSGA-IIMMCGSAMOPSONSGA-IIMMCGSAMOPSONSGA-II
10.7620.3290.6840.8390.6820.7250.2900.3750.318
20.9850.2280.0930.7901.0020.8230.0840.4900.678
30.3930.1720.9490.9141.0850.6860.2680.3270.321
40.9800.0520.4510.8831.0340.7910.2290.3890.448
50.8440.0600.7400.9040.9660.9170.1720.4010.468
60.8760.1020.4010.9961.2260.9240.2580.6500.621
70.6330.0440.8210.8750.9440.7770.1560.4160.303
80.6710.0960.5440.9441.2660.8110.2580.3560.391
90.8830.1500.2631.0200.8900.8690.0550.4420.425
100.9150.0820.2721.0071.0330.8580.0510.3760.694
110.6740.1740.6901.0010.9411.0840.1250.4510.366
120.7600.3430.4721.0840.9640.9170.1120.2960.344
均值0.7810.1530.5320.9381.0030.8490.1720.4140.448

图4

工位和AGV容量对目标的影响"

图5

MMCGSA与对比算法的帕累托前沿"

1 Lee S, Prabhu V V. Just-in-time delivery for green fleets: a feedback control approach[J]. Transportation Research Part D: Transport and Environment, 2016, 46:229-245.
2 Emde S, Boysen N. Optimally routing and scheduling tow trains for JIT-supply of mixed-model assembly lines[J]. European Journal of Operational Research, 2012, 217(2):287-299.
3 Qiu L, Wang J, Chen W, et al. Heterogeneous AGV routing problem considering energy consumption[C]∥IEEE Int Conf on Robotics and Biomimetics, Zhuhai, China, 2015:1894-1899.
4 Zhou B, Shen C. Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration[J]. Journal of Cleaner Production, 2018, 192:293-305.
5 Briand C, He Y, Ngueveu S U. Energy‑efficient planning for supplying assembly lines with vehicles[J]. EURO Journal on Transportation and Logistics, 2018, 7(4):387-414.
6 Mohammed A, Bernd N. A genetic algorithm for supermarket location problem[J]. Assembly Automation, 2015, 35(1):122-127.
7 周炳海,彭涛. 混流装配线准时化物料配送调度优化[J]. 吉林大学学报:工学版,2017,47(4):1253-1261.
Zhou Bing-hai, Peng Tao. Optimal schedule of just-in-time part distribution for mixed-model assembly lines[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4):1253-1261.
8 Emde S, Fliedner M, Boysen N. Optimally loading tow trains for just-in-time supply of mixed-model assembly lines[J]. IIE Transactions, 2012, 44(2):121-135.
9 Emde S, Gendreau M. Scheduling in-house transport vehicles to feed parts to automotive assembly lines[J]. European Journal of Operational Research, 2017, 260(1):255-267.
10 王真,王晨曦,王宇豪,等. 车间多载自动导引车绿色物流调度[J]. 重庆大学学报,2020,43(1):44-52.
Wang Zhen, Wang Chen-xi, Wang Yu-hao, et al. On multi-load AGV green logistics scheduling in knitting workshop[J]. Journal of Chongqing University, 2020, 43(1):44-52.
11 Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA:a gravitational search algorithm[J]. Information Sciences, 2009,179(13): 2232-2248.
[1] 王淑敏,陈伟. 基于连续密度隐马尔可夫模型的矿下异常行为识别算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1067-1072.
[2] 刘元宁,吴迪,朱晓冬,张齐贤,李双双,郭书君,王超. 基于YOLOv3改进的用户界面组件检测算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1026-1033.
[3] 朱小龙,谢忠. 基于机器学习的地理空间数据抽取算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1011-1016.
[4] 孙宝凤,任欣欣,郑再思,李国一. 考虑工人负荷的多目标流水车间优化调度[J]. 吉林大学学报(工学版), 2021, 51(3): 900-909.
[5] 欧阳丹彤,刘扬,刘杰. 故障响应指导下基于测试集的故障诊断方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1017-1025.
[6] 钱榕,张茹,张克君,金鑫,葛诗靓,江晟. 融合全局和局部特征的胶囊图神经网络[J]. 吉林大学学报(工学版), 2021, 51(3): 1048-1054.
[7] 沈淑涛,尼玛扎西. 基于区块链技术的双混沌可识篡改图像加密方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1055-1059.
[8] 顾天奇,胡晨捷,涂毅,林述温. 基于移动最小二乘法的稳健重构方法[J]. 吉林大学学报(工学版), 2021, 51(2): 685-691.
[9] 许骞艺,秦贵和,孙铭会,孟诚训. 基于改进的ResNeSt驾驶员头部状态分类算法[J]. 吉林大学学报(工学版), 2021, 51(2): 704-711.
[10] 魏晓辉,周长宝,沈笑先,刘圆圆,童群超. 机器学习加速CALYPSO结构预测的可行性[J]. 吉林大学学报(工学版), 2021, 51(2): 667-676.
[11] 周炳海,吴琼. 基于多目标的机器人装配线平衡算法[J]. 吉林大学学报(工学版), 2021, 51(2): 720-727.
[12] 方明,陈文强. 结合残差网络及目标掩膜的人脸微表情识别[J]. 吉林大学学报(工学版), 2021, 51(1): 303-313.
[13] 宋元,周丹媛,石文昌. 增强OpenStack Swift云存储系统安全功能的方法[J]. 吉林大学学报(工学版), 2021, 51(1): 314-322.
[14] 王小玉,胡鑫豪,韩昌林. 基于生成对抗网络的人脸铅笔画算法[J]. 吉林大学学报(工学版), 2021, 51(1): 285-292.
[15] 车翔玖,董有政. 基于多尺度信息融合的图像识别改进算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1747-1754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!