吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 2007-2012.doi: 10.13229/j.cnki.jdxbgxb20200627

• 材料科学与工程 • 上一篇    

烧结淬冷MnBi合金的相变和磁性

鄂元龙(),贾洪声(),杨鑫炫,李东飞,刘梅,李海波   

  1. 吉林师范大学 功能材料物理与化学教育部重点实验室,吉林 四平 136000
  • 收稿日期:2020-05-16 出版日期:2021-11-01 发布日期:2021-11-15
  • 通讯作者: 贾洪声 E-mail:eyaunlong@jlnu.edu.cn;jiahs@jlnu.edu.cn
  • 作者简介:鄂元龙(1987-),男,实验师,硕士. 研究方向:磁性功能材料. E-mail:eyaunlong@jlnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(21371071);吉林省科技发展计划项目(20180201079GX);吉林省教育厅“十三五”科学技术项目(JJKH20191003KJ)

Phase transformation and magnetic properties of MnBi alloys by sintered and quenched

Yuan-long E(),Hong-sheng JIA(),Xin-xuan YANG,Dong-fei LI,Mei LIU,Hai-bo LI   

  1. Key Laboratory of Functional Materials Physics and Chemistry,Ministry of Education,Jilin Normal University,Siping 136000,China
  • Received:2020-05-16 Online:2021-11-01 Published:2021-11-15
  • Contact: Hong-sheng JIA E-mail:eyaunlong@jlnu.edu.cn;jiahs@jlnu.edu.cn

摘要:

采用密封低温烧结再淬冷的方法制备了高纯度MnBi合金。利用差热分析仪(DTA)分析烧结过程中Mn-Bi的相变。利用X射线衍射仪(XRD)和振动样品磁强计(VSM)分析了烧结样品的物相和磁性。结果表明:n(Bi)∶n(Mn)为1∶1.3,275 ℃下烧结20 h后淬冷可获得高纯度的低温相MnBi合金块体材料;温度为50~350 K时,磁化强度随温度的升高而减小,矫顽力Hc和剩余磁化强度Mr先减小后增大;温度低于200 K时,随着温度的降低,样品趋近饱和;温度为50 K时,样品的饱和磁化强度为78.0 Am2/kg。本文制备工艺简单且可实现该合金的批量生产,对制备新型合金材料具有重要的参考价值。

关键词: MnBi合金, 烧结, 相变, 磁性

Abstract:

High-pure MnBi alloy was successfully synthesized by closed cryogenic sintering and then rapid quenching method. The phase transformation of the Mn-Bi samples in the sintering process were studied by differential thermal analyzer (DTA). The phases and magnetic properties of the samples were characterized by X-ray diffractometer (XRD) and vibration sample magnetometer (VSM). The results show that the low-temperature phase MnBi alloy block material with high purity can be obtained at 1∶1.3 (n(Bi)∶n(Mn)),275 ℃, 20 h. At 50~350 K, the magnetization decreases with the increasing of temperature, and the coercivity Hc and residual magnetization Mr decrease firstly and then increase. When the temperature is lower than 200 K, the sample is more likely to approach saturation with the decrease of temperature. At 50 K, the saturation magnetization of the sample is 78.0 Am2/kg. The preparation process used in this research is simple and the quantity production of alloy can be realized , which has an important reference value for the preparation of the new type alloy material.

Key words: MnBi alloy, sinter, phase transformation, magnetic properties

中图分类号: 

  • TM273

图1

钼杯腔体组装截面示意图"

图2

不同原子比样品的DTA图谱"

表1

不同原子比样品的相变温度"

相变温度n(Bi)/n(Mn)
1∶11∶1.31∶1.5
T1/℃267.7267.9267.6
T2/℃274.2274.9275.1
T3/℃312.3332.2342.5

图3

不同烧结时间样品的XRD图谱"

图4

不同烧结时间下样品的晶粒尺寸"

图5

不同原子比样品的XRD图谱"

图6

不同原子比样品的晶粒尺寸"

图7

样品的磁滞回线"

表2

样品的磁性参数"

测试温度/K
50100150200250300350

矫顽力/

(kA·m-1

4.02.22.510.518.732.178.9
剩余磁化强度/(Am2·kg-13.12.22.35.48.412.821.8
1 李海波,张玉梅,刘梅,等. FePt/Ag薄膜的结构和磁性[J]. 吉林大学学报:工学版,2010, 40(6):1572-1576.
Li Hai-bo, Zhang Yu-mei, Liu Mei, et al. Structure and magnetic properties of FePt/Ag thin film[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(6):1572-1576.
2 Nguyen T X, Vuong O K T, Nguyen H T, et al. Preparation and magnetic properties of MnBi/Co nanocomposite magnets[J]. Journal of Electronic Materials, 2017, 46(6):3359-3366.
3 Ito M, Tanaka Y, Satoh T, et al. Magnetic properties and structure of low temperature phase MnBi with island structure[J]. AIP Advances, 2017, 7(5):No.056226.
4 Kim S, Moon H, Jung H, et al. Magnetic properties of large-scaled MnBi bulk magnets[J]. Journal of Alloys and Compounds, 2017, 708:1245-1249.
5 Cao S, Yue M, Yang Y X, et al. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets[J]. Journal of Applied Physics, 2011, 109(7): No.07A740.
6 Jensen B A, Tang W, Liu X B, et al. Optimizing composition in MnBi permanent magnet alloys[J]. Acta Materialia, 2019, 181:595-602.
7 Huang Y L, Shi Z Q, Hou Y H, et al. Microstructure, improved magnetic properties, and recoil loops characteristics for MnBi alloys[J]. Journal of Magnetism and Magnetic Materials, 2019, 485:157-164.
8 Nguyen T X, Nguyen V V. Fabrication of MnBi alloys with high ferromagnetic phase content: effects of heat treatment regimes and dopants[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 6888-6894.
9 Cao J, Huang Y L, Hou Y H, et al. Microstructure and magnetic properties of MnBi alloys with high coercivity and significant anisotropy prepared by surfactant assisted ball milling[J]. Journal of Magnetism and Magnetic Materials, 2019, 473: 505-510.
10 Xiang Z, Wang T L, Ma S J, et al. Microstructural evolution and phase transformation kinetics of MnBi alloys[J], Journal of Alloys and Compounds, 2018, 741: 951-956.
11 曹俊,黄有林,闫小童,等. MnBi合金的磁性能与回复曲线研究[J]. 功能材料,2018,49(6):6119-6123.
Cao Jun, Huang You-lin, Yan Xiao-tong, et al. Magnetic performance and recoil loops characteristics of MnBi alloy[J]. Journal of Functional Materials, 2018, 49(6): 6119-6123.
12 刘泽民,张素银,邵诚,等. 无稀土MnBi永磁合金的研究进展[J]. 科技咨询,2016,14(34):80-84.
Liu Ze-min, Zhang Su-yin, Shao Cheng, et al. The research progress of rare-earth free permanent magnetic alloy in MnBi[J]. Science & Technology Information, 2016,14(34): 80-84.
13 张素银,刘泽民,邵成,等. 稀土元素Gd对MnBi合金的微结构与磁性能的影响[J]. 功能材料,2017,48(1):1221-1224, 1229.
Zhang Su-yin, Liu Ze-min, Shao Cheng, et al. Effect of rare earth elements Gd doping on microstructure and magnetic properties of MnBi alloy[J]. Journal of Functional Materials, 2017, 48(1): 1221-1224, 1229.
14 Kang K, Moodenbaugh A R, Lewis L H. MnBi nanostructures: size dependence of magnetostructural transition and matrix templating[J].Applied Physics Letters, 2007, 90(15):No.153112.
15 Yang J B, Kamarju K, Yelon W B, et al. Magnetic properties of the MnBi intermetallic compound[J]. Applied Physics Letters, 2001, 79(12): 1846-1848.
16 Yang J B, Yang Y B, Chen X G, et al. Anisotropic nanocrystalline MnBi with high coercivity at high temperature[J]. Applied Physics Letters, 2011, 99(8):No.082505.
17 黄潇,李传健,李卫. 粉末混合烧结法制备MnBi永磁合金的研究[J]. 金属功能材料,2006,13(2):14-16.
Huang Xiao, Li Chuan-jian, Li Wei. Preparation of MnBi permanent alloy using powder technique[J]. Metallic Functional Materials, 2016, 13(2): 14-16.
18 蒋欢畅,张朋越,葛洪亮,等. 熔淬法制备MnxBi100-x永磁合金的成相过程和磁性能[J]. 磁性材料及器件,2014,45(2):6-8.
Jiang Huan-chang, Zhang Peng-yue, Ge Hong-liang, et al. Phase formation behavior and magnetic properties of MnxBi100-x permanent magnetic alloys prepared by melt-spinning[J]. Journal of Magnetic Materials and Devices, 2014, 45(2): 6-8.
19 钟文定,杨正. 锰铋合金在不同热处理后的磁性研究[J]. 物理学报,1962,18(4):188-193.
Zhong Wen-ding, Yang Zheng. Magnetic properties of MnBi alloys after different heat treatments[J]. Acta Physica Sinica, 1962, 18(4):188-193.
[1] 陈奕颖,金敬福,丛茜,陈廷坤,任露泉. 不同冰点介质对冰黏附强度的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1926-1932.
[2] 杨帆,张旭东,赵蒙,折波,邓俊楷. 基于有限元计算的形状记忆合金⁃金属玻璃复合材料变形行为[J]. 吉林大学学报(工学版), 2021, 51(1): 172-180.
[3] 段春争,张方圆,寇文能,魏斌. 高速硬切削表面白层马氏体相变[J]. 吉林大学学报(工学版), 2019, 49(5): 1575-1583.
[4] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] 孙正, 黄钰期, 俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[6] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[7] 万成彪, 潘孟春, 张琦, 庞鸿锋, 朱学军. 基于张量特征值和特征向量的磁性目标定位[J]. 吉林大学学报(工学版), 2017, 47(2): 655-660.
[8] 杨悦, 李雪, 徐晓丹. Ti-B-C-N粉末烧结的微观组织及其性能[J]. 吉林大学学报(工学版), 2017, 47(2): 552-556.
[9] 金敬福, 韩丽曼, 曹敏, 李杨, 齐迎春, 丛茜. 水滴结冰相变体积膨胀规律[J]. 吉林大学学报(工学版), 2016, 46(5): 1546-1551.
[10] 张家陶, 赵宇光, 谭娟. 初始组织对电脉冲处理逆变奥氏体晶粒细化效果的影响[J]. 吉林大学学报(工学版), 2016, 46(1): 193-198.
[11] 庄蔚敏, 解东旋, 余天明, 于皖东. 基于损伤-相变本构模型的高强钢热成形数值模拟分析[J]. 吉林大学学报(工学版), 2015, 45(4): 1206-1212.
[12] 马云海, 尚文博, 范雪莹, 高知辉, 佟金, 闫志峰, 常志勇. 仿骨β相磷酸三钙多孔生物陶瓷制备及降解[J]. 吉林大学学报(工学版), 2015, 45(4): 1367-1374.
[13] 曹敏, 陈廷坤, 丛茜, 金敬福. 表面形态对结冰附着强度的影响[J]. 吉林大学学报(工学版), 2013, 43(05): 1314-1319.
[14] 朱丽娟, 谷诤巍, 吕义, 徐虹. 超高强钢热冲压硬化机理[J]. 吉林大学学报(工学版), 2013, 43(02): 376-379.
[15] 万云霞, 程德福, 卢浩, 王言章. 混场源电磁探测仪器发射天线设计[J]. , 2012, (06): 1432-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!