吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (7): 1499-1508.doi: 10.13229/j.cnki.jdxbgxb20210049

• 车辆工程·机械工程 • 上一篇    

液压伺服柔驱机构设计及其刚度连续可调分析

蒋林1,2(),周玲1,赵慧1,2   

  1. 1.武汉科技大学 冶金装备及其控制教育部重点实验室,武汉 430081
    2.武汉科技大学 机器人与智能系统研究院,武汉 430081
  • 收稿日期:2021-01-11 出版日期:2022-07-01 发布日期:2022-08-08
  • 作者简介:蒋林(1976-),男,教授,博士. 研究方向:液压伺服机器人.E-mail:jianglin76@wust.edu.cn
  • 基金资助:
    武汉市应用基础前沿项目(2019010701011404)

Design and stiffness continuously adjustable analysis of hydraulic servo flexible drive mechanism

Lin JIANG1,2(),Ling ZHOU1,Hui ZHAO1,2   

  1. 1.Key Laboratory of Metallurgical Equipment and Control Technology,Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China
    2.Institute of Robotics and Intelligent Systems,Wuhan University of Science and Technology,Wuhan 430081,China
  • Received:2021-01-11 Online:2022-07-01 Published:2022-08-08

摘要:

为满足液压机械臂工作时输出高刚度,碰撞时变刚度实现柔顺性,让机器人在不同工作条件和场景下具有相应的柔顺性,设计了一种兼具阀控泄漏量和浮动位的液压伺服柔驱机构。首先,介绍该关节结构和变刚度原理;其次,利用Amesim建立其动态仿真模型,确定阀控泄漏量和浮动位半径范围;然后,利用MATLAB/Simulink建立其刚度仿真模型,分析单个因素与关节变刚度的关系;最后,基于MATLAB拟合关节刚度多元非线性回归方程,并通过程序实现刚度初始散点和拟合四维曲线对比图。仿真结果表明:在保证较好的动态特性时,该柔驱机构刚度能在较宽范围内连续可调。

关键词: 机械电子工程, 阀控泄漏量, 浮动位, 多元非线性回归, 刚度连续可调

Abstract:

In order that the hydraulic manipulator outputs high stiffness while working,and changes stiffness to realize compliance while collision, the robot has corresponding flexibility under different working conditions and scenarios. A hydraulic servo flexible drive mechanism with both valve-controlled leakage and floating position was designed. Stiffness was reduced by internal and external unloading, so the robot could improve the safety of man-machine physical contact. Firstly, the joint structure and the principle of variable stiffness were introduced. Then, the dynamic simulation model was established by AMESim. The ranges of the valve controlled leakage and the radius of floating leakage were determined, when the following characteristics and motion characteristics of the mechanism were good. Next, the stiffness simulation model was established by MATLAB/Simulink, stiffness scatter values under different working conditions were obtained by simulation. Then the relationship between the single factor and the variable stiffness of the joint was analyzed. Finally, the multivariate nonlinear regression equation of joint stiffness, about floating position, valve control leakage and volume, was fitted based on MATLAB. And the comparison diagram of the initial stiffness scatters and the fitting four-dimensional curve was realized by the program. The results show that the stiffness of the flexible drive mechanism can be adjusted continuously in a wide range while ensuring good dynamic characteristics.

Key words: mechatronic engineering, valve-controlled leakage, floating position, multivariate nonlinear regression, stiffness continuously adjusted

中图分类号: 

  • TH12

图1

液压伺服柔驱机构剖视图"

图2

柔顺装置A-A方向剖视图"

图3

系统的等效液压桥路"

图4

AMESim液压伺服柔驱机构仿真模型1-信号源;2-比较环节;3-增益;4-驱动机构;5-执行器;6-外负载;7-浮动位;8-比例流量阀;9-外接压力限制阀;10-油箱;11-泵;12-电机;13-溢流阀"

表1

液压伺服柔驱机构参数"

参 数参数值
滑阀凸肩直径/mm40
阀芯直径/mm25
摆动缸负载惯性矩/(kg·m20.4
摆动缸粘滞摩擦因数/[N·m·(rev·min-1)]0.8
摆动缸两端死区体积/cm310
顺序阀弹簧力/MPa7
节流孔直径/mm6
旁通阀台肩直径/mm8
旁通阀阀芯直径/mm4
旁通阀质量/kg0.010
旁通阀弹簧刚度/(N·mm-120
电机转速/(r·min-11500
泵的排量/(mL·r-1100
溢流阀限制压力/MPa15
转角增益值1e-5
外负载力矩/(N·m)40

图5

位置跟随特性随阀控泄漏量和浮动位半径变化"

图6

节流口的流量曲线"

图7

旁通阀的阀口面积曲线"

图8

摆动缸速度曲线"

表2

刚度仿真模型主要参数"

参数名称数值
油膜宽度nπ/Dm0.01
油膜长度l/m0.08
油液的动力黏度μ/(Pa·s)0.05
外力输入时产生的压差ΔP/Pa2×106
工作腔内径r1/m0.025
工作腔长度L/m0.0731
工作腔长度R/m0.0382
容积Vt/m31.26×10-4
阀口流量系数Cd0.65
内泄漏qn/(m3·s-11×10-9
油液密度ρ/(kg·m-3850

图9

刚度仿真模型"

图10

刚度随压力变化曲线"

图11

刚度随容积变化曲线"

图12

刚度随阀控泄漏量变化曲线"

图13

刚度随浮动位半径变化曲线"

表3

刚度散点"

Ps/

MPa

Vt/

(10-4m3

qx/

(10-5m3·s-1

rf/(10-3m)

Kh/(Pa·

m3·rad-2

101.260.070.45470 80
101.260.470.55464 60
101.260.870.65459 30
101.261.270.75454 50
101.360.070.45436 10
101.360.470.55430 50
101.360.870.65425 50
101.361.270.75421 10
101.460.070.45406 30
101.460.470.55401 00
101.460.870.65396 40
101.461.270.75392 20
101.560.070.45380 20
101.560.470.55375 30
101.560.870.65371 00
101.561.270.75367 10
121.260.470.65463 80
121.360.070.75426 50
121.461.270.45405 70
121.560.870.55377 30
141.260.870.75461 30
141.361.270.65430 40
141.460.070.55407 40
141.560.470.45384 10
161.261.270.55470 60
161.360.870.45441 10
161.460.470.75400 50
161.560.070.65379 10

表4

回归模型参数置信区间表"

回归系数置信区间
b0129 321.5[123 515.7 135 127.3]
b1128.0[-56.3 312.3]
b2-0.6[-7.7 6.4]
b3-92 625.0[-100 604.1 -846 45.9]
b422 250.0[19 422.0 25 078.0]
b5-341.1[-586.2 -96.0]
b6101.6[-75.2 278.3]
b7-5 075.0[-8 478.1 -1 672.0]
b81 000.0[-1 828.0 3 828.0]

图14

关节刚度四维空间曲线"

1 王旭,陈乃建,王超,等. 助老助残轮椅用绳传动机械臂结构设计[J]. 济南大学学报:自然科学版,2020,34(3):300-305.
Wang Xu, Chen Nai-jian, Wang Chao, et al. Structure design of rope-driven mechanical arm for elderly and disabled wheel chair[J]. Journal of University of Jinan (Natural Science Edition),2020,34(3):300-305.
2 Mahdi H, Chavoshian C, Mostafa J,et al. Recurrent neuro-fuzzy model of pneumatic artificial muscle position[J]. Journal of Mechanical Science and Technology,2020,34(1):499-508.
3 朱嘉齐,章家岩,冯旭刚. 柔性臂测量机的圆光栅偏心参数标定算法[J]. 电子测量与仪器学报,2019,33(8):1-7.
Zhu Jia-qi, Zhang Jia-yan, Feng Xu-gang. Calibration algorithm of circular grating eccentric parameters for flexible arm measuring machine[J]. Journal of Electrical Measurement and Instrumentation,2019,33(8):1-7.
4 Montazeri A, West C, Monk S D,et al. Dynamic modelling and parameter estimation of a hydraulic robot manipulator using a multi-objective genetic algorithm[J]. International Journal of Control,2017,90(4):661-683.
5 蔡若凡. 一种新型的可变刚度柔性关节设计与控制研究[D]. 哈尔滨:哈尔滨工业大学机电工程学院,2017.
Cai Ruo-fan. Design and control research of a novel flexible joint with variable stiffness[D]. Harbin:School of Mechanic Engineering, Harbin Institute of Technology,2017.
6 Sohn J W, Gang H G, Choi S B. An experimental study on torque characteristics of magnetorheological brake with modified magnetic core shape[J]. Advances in Mechanical Engineering, 2018, 10(1):1-8.
7 Groothuis S, Rusticelli G, Zucchelli A,et al. The variable stiffness actuator vsaUT-II:mechanical design,modeling,and identification[J]. IEEE/ASME Transactions on Mechatronics,2014,19(2):589-597.
8 张明, 房立金, 孙凤,等. 永磁变刚度柔性关节的力学分析与控制器设计[J]. 机械工程学报, 2019, 55(5):89-96.
Zhang Ming, Fang Li-jin, Sun Feng,et al. Mechanical analysis and controller design of flexible joint with permanent magnet variable stiffness[J]. Journal of Mechanical Engineering,2019,55(5):89-96.
9 李满宏,马艳悦,张明路,等. 基于凸轮机构的变刚度仿生柔性关节设计与分析[J]. 仪器仪表学报,2019,40(2):216-225.
Li Man-hong, Ma Yan-yue, Zhang Ming-lu,et al. Design and analysis of bionic flexible joint with variable stiffness based on cam mechanism[J]. Chinese Journal of Scientific Instrument,2019,40(2): 216-225.
10 蒋林,陈新元,赵慧,等. 基于液压转角伺服的液压关节研究[J]. 机电工程,2011,28(3):265-268.
Jiang Lin, Chen Xin-yuan, Zhao Hui, et al. Research on hydraulic joint based on hydraulic angle servo[J]. Mechanical and Electrical Engineering,2011,28(3):265-268.
11 潘孝越,蒋林, 任利胜,等. 液压伺服柔顺关节的变刚度设计与研究[J]. 武汉科技大学学报,2020,43(4):290-296.
Pan Xiao-yue, Jiang Lin, Ren Li-sheng, et al. Design and research on variable stiffness of hydraulic servo compliant joint[J]. Journal of Wuhan University of Science and Technology,2020,43(4):290-296.
12 恭飞,王雪婷,杜奕. 基于AMEsim的液压系统建模与仿真[J]. 软件,2020,41(1):42-45.
Gong Fei, Wang Xue-ting, Du Yi. Modeling and simulation of hydraulic system based on AMESim [J]. Software, 2020,41(1) :42-45.
13 彭贺,马文星,王忠山,等. 丘陵山地拖拉机车身调平控制仿真分析与试验[J].吉林大学学报:工学版,2019,49(1):157-165.
Peng He, Ma Wen-xing, Wang Zhong-shan,et al. Simulation analysis and experiment on leveling control of tractor body in hilly mountains[J]. Journal of Jilin University (Engineering and Technology Edition), 2019,49(1):157-165.
14 陈德刚,孙仁云,陈勇,等. 基于AMESim的天然气发动机电控调压器仿真研究[J]. 机床与液压,2012,40(11):109-112.
Chen De-gang, Sun Ren-yun, Chen Yong,et al. Simulation research on electrically controlled voltage regulator of natural gas engine based on AMESim[J]. Machine Tool & Hydraulics,2012, 40(11):109-112.
15 Jiang Lin, Zhu Zhi-chao, Liu Hong-hai,et al. Analysis of dynamic characteristics of water hydraulic rotating angle self-servo robot joint actuator[J]. Journal of Intelligent & Robotic Systems,2018,92(2):279-291.
16 马铭泽,田拥胜,王涛,等. 基于AMESim的比例伺服流量阀建模与仿真[J]. 液压气动与密封,2017, 37(1):16-19.
Ma Ming-ze, Tian Yong-sheng, Wang Tao,et al. Modeling and simulation of proportional servo flow valve based on AMESim[J]. Hydraulics Pneumatics & Seals,2017,37(1):16-19.
17 徐巨华. 油液体积弹性模量对电液伺服系统动态特性影响研究[D]. 杭州:浙江大学机械工程学院,2013.
Xu Ju-hua. Study on the influence of oil volume elastic modulus on dynamic characteristics of electro-hydraulic servo system[D]. Hangzhou:School of Mechanic Engineering, Zhejiang University,2013.
18 周志鸿,闫建辉,刘连华. 间隙泄漏量的分析计算[J]. 凿岩机械气动工具,2002(4):14-17.
Zhou Zhi-hong, Yan Jian-hui, Liu Lian-hua. Analysis and calculation of clearance leakage[J]. Rock Drilling Machinery and Pneumatic Tools,2002(4):14-17.
19 伍家驹,于阳,李园庭,等. 非对称T型滤波器设计的一种五维可视化算法[J]. 中国电机工程学报,2010,30(33):30-36.
Wu Jia-ju, Yu Yang, Li Yuan-ting,et al. A five-dimensional visualization algorithm for design of asymmetric T-filter[J]. Proceedings of the CSEE,2010,30(33):30-36.
20 伍家驹,马若飞,王长坤,等. 实现五维数据可视化的一种方法[J]. 电力电子技术, 2011,45(12):90-92.
Wu Jia-ju, Ma Ruo-fei, Wang Chang-kun, et al. A method to realize five-dimensional data visualization[J]. Power Electronics,2011,45(12):90-92.
[1] 李学勇,赵仲秋,张春松,路长厚. 基于有限元的人体⁃机械手交互力计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1612-1619.
[2] 施昕昕,黄家才,高芳征. 基于分数阶BICO滤波器的运动控制测量噪声抑制[J]. 吉林大学学报(工学版), 2021, 51(5): 1873-1878.
[3] 于萍,穆特,朱黎辉,周子业,宋杰. 钻具输送装置非线性动力学分析及稳定性控制[J]. 吉林大学学报(工学版), 2021, 51(3): 820-830.
[4] 姜继海,赵存然,张冠隆,车明阳. 航空煤油柱塞泵摩擦副涂层材料摩擦性能[J]. 吉林大学学报(工学版), 2021, 51(1): 147-153.
[5] 胡明伟,王洪光,潘新安. 基于正交设计的协作机器人全域结构优化设计[J]. 吉林大学学报(工学版), 2021, 51(1): 370-378.
[6] 刘昌盛, 何清华, 张大庆, 李铁辉, 龚俊, 赵喻明. 混合动力挖掘机势能回收系统参数优化与试验[J]. 吉林大学学报(工学版), 2014, 44(2): 379-386.
[7] 龚俊, 何清华, 张大庆, 张云龙, 刘昌盛, 唐中勇. 混合动力叉车节能效果评价及能量回收系统试验[J]. 吉林大学学报(工学版), 2014, 44(01): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!