吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2385-2390.doi: 10.13229/j.cnki.jdxbgxb20210846

• 计算机科学与技术 • 上一篇    

基于循环知识图谱的虚拟社区知识动态推荐方法

黎才茂(),陈少凡,林成蓉,候玉权,李浩   

  1. 海南大学 计算机科学与技术学院,海口 570228
  • 收稿日期:2021-08-30 出版日期:2022-10-01 发布日期:2022-11-11
  • 作者简介:黎才茂(1973-),男,副教授.研究方向:人工智能,机器学习,软件工程. E-mail:lcaim@126.com
  • 基金资助:
    海南省重点研发计划项目(ZDYF2020039)

Dynamic recommendation method of virtual community knowledge based on circular knowledge map

Cai-mao LI(),Shao-fan CHEN,Cheng-rong LIN,Yu-quan HOU,Hao LI   

  1. School of Computer Science and Technology,Hainan University,Haikou 570228,China
  • Received:2021-08-30 Online:2022-10-01 Published:2022-11-11

摘要:

针对数字化社区中资源数量庞大、用户难以第一时间方便且快速地寻找到所需数据的缺点,提出了一种基于循环知识图谱的虚拟社区知识动态推荐方法。将虚拟社区中知识点邻域实体当成上下文,获取知识表达学习实体,使循环知识图谱与待推荐数据相结合,计算用户历史点击信息,提取出实体特征向量;同时建立虚拟社区中用户模型,通过若干神经的协同过滤层、隐式交互用户以及知识点关系,实现多次非线性变换待推荐用户的隐式向量以及知识点隐式向量,完成动态推荐。实验证明:本文方法推荐满意度较高且推荐结果全面、不单一化。

关键词: 循环知识图谱, 虚拟社区知识, 动态推荐, 特征提取, 用户建模

Abstract:

For the disadvantage that the number of resources in digital communities is huge and it is difficult for users to find the required data easily and quickly at the first time, a dynamic recommendation method for virtual community knowledge was proposed based on cyclic knowledge graphs. The knowledge point neighborhood entities in the virtual community were treated as contexts to obtain knowledge expression learning entities. The cyclic knowledge graph was fused with the data to be recommended, the user's historical click information was calculated, and the entity feature vector was extracted. Meanwhile, the user model in the virtual community with several neural co?filtering layers was established, implicitly interacting users and knowledge point relationships. The implicit vector of users to be recommended and the implicit vector of knowledge points were nonlinearly transformed several times to complete dynamic recommendation. The experiments prove that the recommendation satisfaction is high, and the recommendation results are comprehensive and not homogenized.

Key words: circular knowledge map, virtual community knowledge, dynamic recommendation, feature extraction, user modeling

中图分类号: 

  • TP391

图1

本文方法下a的取值"

图2

本文方法推荐满意度测试"

图3

本文方法召回率测试"

图4

本文方法F1值测试结果"

1 陈浩, 李永强, 冯远静. 基于多关系循环事件的动态知识图谱推理[J]. 模式识别与人工智能, 2020, 33(4): 337-343.
Chen Hao, Li Yong-qiang, Feng Yuan-jing. Dynamic knowledge mapping reasoning based on multi relational cyclic events[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(4): 337-343.
2 王鑫, 傅强, 王林, 等. 知识图谱可视化查询技术综述[J]. 计算机工程, 2020, 46(6): 1-11.
Wang Xin, Fu Qiang, Wang Lin, et al. Survey on visualization query technology of knowledge graph[J]. Computer Engineering, 2020, 46(6): 1-11.
3 康雁, 李涛, 李浩, 等. 融合知识图谱与协同过滤的推荐模型[J]. 计算机工程, 2020, 46(12): 73-79, 87.
Kang Yan, Li Tao, Li Hao, et al. Recommendation model fusing with knowledge graph and collaborative filtering[J]. Computer Engineering, 2020, 46(12): 73-79, 87.
4 张天杭, 李婷婷, 张永刚. 基于知识图谱嵌入的多跳中文知识问答方法[J]. 吉林大学学报: 理学版, 2022, 60(1): 119-0126.
Zhang Tian-hang, Li Ting-ting, Zhang Yong-gang. Multi-hop Chinese knowledge question answering method based on knowledge graph embedding[J]. Journal of Jilin University (Science Edition), 2022, 60(1): 119-0126.
5 唐浩, 刘柏嵩, 刘晓玲, 等. 基于协同知识图谱特征学习的论文推荐方法[J]. 计算机工程, 2020, 46(9): 306-312.
Tang Hao, Liu Bai-song, Liu Xiao-ling, et al. Paper recommendation method Based on feature learning of collaborative knowledge graph[J]. Computer Engineering, 2020, 46(9): 306-312.
6 李浩, 张亚钏, 康雁, 等. 融合循环知识图谱和协同过滤电影推荐算法[J]. 计算机工程与应用, 2020, 56(2): 106-114.
Li Hao, Zhang Ya-chuan, Kang Yan, et al. Movie recommendation algorithm based on circular knowledge mapping and collaborative filtering [J]. Computer Engineering and Application, 2020, 56(2): 106-114.
7 沈冬东, 汪海涛, 姜瑛, 等. 基于知识图谱嵌入与多神经网络的序列推荐算法[J]. 计算机工程与科学, 2020, 42(9): 1661-1669.
Shen Dong-dong, Wang Hai-tao, Jiang Ying, et al. Sequential recommendation algorithm based on knowledge map embedding and multiple neural networks [J]. Computer Engineering and Science, 2020, 42(9): 1661-1669.
8 刘纵横,汪海涛,姜瑛,等.基于混合神经网络的序列推荐算法[J].重庆邮电大学学报:自然科学版, 2021, 33 (3): 466-474.
Liu Zong-heng, Wang Hai-tao, Jiang Ying, et al. Sequence recommendation algorithm based on a hybrid neural network. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2021, 33(3): 466-474.
9 仲兆满, 李恒, 管燕, 等. 活动社交网络EBSNs上冷启动推荐方法[J]. 重庆邮电大学学报:自然科学版, 2021, 33(5): 834-843.
Zhong Zhao-man, Li Heng, Guan Yan, et al. Cold-start recommendation method in event-based social networks[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2021, 33(5): 834-843.
10 孙雨生, 祝博, 朱礼军. 国内基于知识图谱的信息推荐研究进展[J].情报理论与实践, 2019, 42(12): 163-169, 149.
Sun Yu-sheng, Zhu Bo, Zhu Li-jun. Research progress of information recommendation based on knowledge map in China[J]. Intelligence Theory and Practice, 2019, 42(12): 163-169, 149.
11 姜强, 药文静, 赵蔚, 等. 面向深度学习的动态知识图谱建构模型及评测[J]. 电化教育研究, 2020, 41(3): 85-92.
Jiang Qiang, Yao Wen-jing, Zhao Wei, et al. Construction model and evaluation of dynamic knowledge mapping for deep learning[J]. Research on Audio Visual Education, 2020, 41(3): 85-92.
12 程淑玉, 黄淑桦, 印鉴. 融合知识图谱与循环神经网络的推荐模型[J]. 小型微型计算机系统, 2020, 41(8): 1670-1675.
Cheng Shu-yu, Huang Shu-hua, Yin Jian. Recommendation model based on knowledge map and recurrent neural network[J]. Mini-computer System, 2020, 41(8): 1670-1675.
13 于娟, 黄恒琪, 席运江, 等. 基于图数据库的人物关系知识图谱推理方法研究[J]. 情报科学, 2019, 37(10): 8-12.
Yu Juan, Huang Heng-qi, Xi Yun-jiang, et al. Research on the reasoning method of person relationship knowledge map based on graph database [J]. Information Science, 2019, 37(10): 8-12.
14 肖勇, 钱斌, 周密. 基于语义关联的电力计量跨媒体知识图谱构建方法[J]. 计算机科学, 2020, 47(): 126-131.
Xiao Yong, Qian Bin, Zhou Mi. Construction method of power metering cross media knowledge map based on Semantic Association [J]. Computer science, 2020, 47(S2): 126-131.
15 邹鼎杰. 基于知识图谱和贝叶斯分类器的图书分类[J].计算机工程与设计, 2020, 41(6): 1796-1801.
Zou Ding-jie. Book classification based on knowledge map and Bayesian classifier [J]. Computer Engineering and Design, 2020, 41(6): 1796-1801.
16 刘航, 周建青. 基于知识图谱的国内外创新扩散研究可视化分析[J]. 科研管理, 2020, 41(8): 72-84.
Liu Hang, Zhou Jian-qing. Visualization analysis of innovation diffusion research at home and abroad based on knowledge mapping[J]. Scientific Research Management, 2020, 41(8): 72-84.
17 Fauzi M A. Knowledge sharing in Asia Pacific via virtual community platform: a systematic review[J]. International Journal of Web Based Communities, 2019, 15(4): 368-394.
18 汤伟韬, 余敦辉, 魏世伟. 融合知识图谱与用户评论的商品推荐算法[J]. 计算机工程, 2020, 46(8): 93-100.
Tang Wei-tao, Yu Dun-hui, Wei Shi-wei. Commodity recommendation algorithm fusing with knowledge graph and user comment[J]. Computer Engineering, 2020, 46(8): 93-100.
19 Si Y L, Zhang F Z, Liu W Y. An adaptive point-of-interest recommendation method for location-based social networks based on user activity and spatial features[J]. Knowledge-Based Systems, 2019, 163: 267-282.
20 Myoupo J F, Yankam Y F, Tchendji V K. On the dynamic replacement of virtual service resources for mobile users in virtual networks[J]. Journal of Computers, 2020, 15(1): 10-21.
21 石丽, 秦萍. 基于CSSCI文献分析的国内智库研究知识图谱和进展述评[J]. 南京航空航天大学学报: 社会科学版, 2019, 21(3): 96-102.
Shi Li, Qin Ping. Knowledge mapping and progress review of domestic think tank research based on CSSCI literature analysis[J]. Journal of Nanjing University of Aeronautics and Astronautics (Social Science Edition), 2019, 21 (3): 96-102.
22 Zhang Lei, Liu Ping, Gula J a. Session based dynamic attention ensemble neural network news recommendation[J]. Machine Learning, 2019, 108 (10): 1-25.
23 Xu C. A big-data oriented recommendation method based on multi-objective optimization[J]. Knowledge-Based Systems, 2019, 177: 11-21.
[1] 周怡娜,董宏丽,张勇,路敬祎. 基于VMD去噪和散布熵的管道信号特征提取方法[J]. 吉林大学学报(工学版), 2022, 52(4): 959-969.
[2] 李国发,王彦博,何佳龙,王继利. 机电装备健康状态评估研究进展及发展趋势[J]. 吉林大学学报(工学版), 2022, 52(2): 267-279.
[3] 陈晓雷,孙永峰,李策,林冬梅. 基于卷积神经网络和双向长短期记忆的稳定抗噪声滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 296-309.
[4] 许鸿奎,姜彤彤,李鑫,姜斌祥,王永雷. 结合降噪自编码与极限学习机的LTE上行干扰分析[J]. 吉林大学学报(工学版), 2022, 52(1): 195-203.
[5] 刘桂霞,裴志尧,宋佳智. 基于深度学习的蛋白质⁃ATP结合位点预测[J]. 吉林大学学报(工学版), 2022, 52(1): 187-194.
[6] 刘远红,郭攀攀,张彦生,李鑫. 基于黎曼流形的稀疏图保持投影的特征提取[J]. 吉林大学学报(工学版), 2021, 51(6): 2268-2279.
[7] 钟辉,康恒,吕颖达,李振建,李红,欧阳若川. 基于注意力卷积神经网络的图像篡改定位算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1838-1844.
[8] 朱小龙,谢忠. 基于海量文本数据的知识图谱自动构建算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1358-1363.
[9] 徐涛,马克,刘才华. 基于深度学习的行人多目标跟踪方法[J]. 吉林大学学报(工学版), 2021, 51(1): 27-38.
[10] 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[11] 董强, 刘晶红, 周前飞. 用于遥感图像拼接的改进SURF算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1644-1652.
[12] 尹明, 战荫伟, 裴海龙. 基于稀疏补算子学习的图像融合方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058.
[13] 肖钟捷. 基于小波空间特征谱熵的数字图像识别[J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998.
[14] 刘红,孙爽滋,王庆元,李延忠. 基于PSO的模拟电路故障信息特征提取[J]. 吉林大学学报(工学版), 2015, 45(2): 675-680.
[15] 潘海阳, 刘顺安, 姚永明. 基于深度信息的自主空中加油技术[J]. 吉林大学学报(工学版), 2014, 44(6): 1750-1756.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!