吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (2): 413-420.doi: 10.13229/j.cnki.jdxbgxb20210707

• 交通运输工程·土木工程 • 上一篇    下一篇

电动载货三轮车风险行为及影响因素分析

贺宜1,2(),孙昌鑫1,2,彭建华3,吴超仲1,2,江亮4,马明5   

  1. 1.武汉理工大学 智能交通系统研究中心,武汉 430063
    2.武汉理工大学 水路公路交通安全控制与装备教育部工程研究中心,武汉 430063
    3.交通运输部科学研究院,北京 100029
    4.交通运输部 中国交通通信信息中心,北京 100011
    5.交通运输部 运输服务司,北京 100736
  • 收稿日期:2021-07-29 出版日期:2023-02-01 发布日期:2023-02-28
  • 作者简介:贺宜(1986-),男,副研究员,博士. 研究方向:智能交通,交通安全. E-mail: heyi@whut.edu.cn
  • 基金资助:
    国家自然科学基金项目(52072292)

Risk behaviors and influencing factors of cargo electric tricycles

Yi HE1,2(),Chang-xin SUN1,2,Jian-hua PENG3,Chao-zhong WU1,2,Liang JIANG4,Ming MA5   

  1. 1.Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063,China
    2.Engineering Research Center of Waterway and Highway Traffic Safety Control and Equipment,Ministry of Education,Ministry of Education,Wuhan University of Technology,Wuhan 430063,China
    3.China Academy of Transportation Sciences,Ministry of Transport,Beijing 100029,China
    4.China Transport Telecommunications & Information Center,Ministry of Transport,Beijing 100011,China
    5.Department of Transport Services,Ministry of Transport,Beijing 100736,China
  • Received:2021-07-29 Online:2023-02-01 Published:2023-02-28

摘要:

为探究电动载货三轮车群体风险驾驶行为的行为特征及其影响因素,设计并实施了“个性特质-态度/感知-行为”风险行为影响因素问卷量表,分析了906名电动载货三轮车骑行者和280名对照组,数据采用结构方程模型建立了道路行驶失误、道路行驶错误、超速违规和红灯违规4类风险行为模型,基于样本数据的信息熵对风险因素二次赋权,分析各因素对电动载货三轮车骑行风险行为的影响机制。结果表明:容易愤怒(β=0.332,0.309)且利他性差(β=-0.215,-0.156)者易发生行驶错误和超速违规的行为;容易愤怒(β=0.275),无规范感较强(β=0.164)且利他性差(β=-0.209)者容易发生行驶失误类风险行为;焦虑程度高(β=0.144)且无规范感强(β=0.231)者容易发生红灯违规类风险行为;安全态度差者容易发生所有风险行为。失误、错误、超速、红灯4类风险行为的综合风险得分分别为0.367、0.176、0.321、0.136。

关键词: 交通运输安全工程, 风险行为, 结构方程模型, 电动载货三轮车, 致因分析

Abstract:

To explore cargo electric tricycles' risk behavioral characteristics of driving behaviors and its factors, a questionnaire scale of "personality trait-attitude/perception-behaviors" factors of risk behavior was designed and implemented. The data of 906 electric tricycle riders and 280 control group were analyzed, and four risk behavior models of road lapse, errors, speeding and red-light violations were given by structural equation. Based on the information entropy of the sample data, the risk factors were given weight to analyze the influencing mechanism of each factor on the risky riding behavior of cargo electric tricycles. Studies have shown that people who are prone to anger (β=0.332,0.309) and hardly to altruism (β=-0.215,-0.156) are more likely to make risk behaviors of errors and speeding, and people who are prone to anger(β=0.275), have a strong normlessness(β=0.164) and have a poor altruism(β=-0.209) are more likely to make risk behaviors of lapses. People with a high anxiety(β=0.144) and a strong normlessness(β=0.231) are more likely to make risk behavior of red-light running. People with a poor safety attitude are prone to all four risk behaviors. The comprehensive risk scores of the four types of risk behaviors are 0.367, 0.176, 0.321 and 0.136 respetively.

Key words: transportation safety engineering, risk behaviors, structural equation, cargo electric tricycles, cause analysis

中图分类号: 

  • U491.254

图1

调查样本的地域分布(排名前10)"

表1

样本主要特征信息"

样本属性组 别电动三轮车电动两轮车
占比 (N=906)占比 (N=280)
性别90.480.7
9.619.3
年龄17~2411.510.4
24~3035.032.7
30~3535.135.6
超过3518.521.2
受教育程度小学2.81.8
中学56.254.3
本科22.629.3
研究生0.60.4
其他17.914.3
月收入低于30006.511.8
3000~500043.240.7
5000~800042.140.7
超过80008.36.8
从业年限0~128.527.5
1~333.337.1
3~522.521.4
超过515.713.9
驾龄0~111.86.8
2~547.648.2
5~1031.334.3
超过109.310.7

每日骑行

距离

0~2022.839.0
20~5040.530.5
50~8021.213.2
80~10012.011.4
超过1003.55.9日工作时长
0~820.317.7
8~1023.927.8
10~1232.839.0
12~1417.49.0超过14
5.66.5过去两年 发生事故
73.682.5
26.417.5

事故严重

程度

未发生事故73.682.5
仅财产损失3.51.8
轻微伤害22.815.4
重伤乃至死亡0.10.4

表2

风险因素量表"

量表题目及信度均值
E 工作乐趣(α=0.79)2.71
e1 骑车不仅是为了送快件也是为了乐趣2.78
e2 骑电动/摩托车让我很放松2.64
F 骑行自信(α=0.74)3.67
f1 我有信心按时骑到目的地3.79
f2 我有能力处理行驶中的任何危险状况3.56
G 风险感知(α=0.91)3.64
g1 对可能产生严重后果的驾驶操作感到很危险3.62
g2 你是否担心自己在交通事故中受伤3.73
g3 你认为自己发生交通事故的可能性有多少3.57
H 不安全态度(α=0.91)1.62
h1 为赶时间可以在机动车道和非机动车道之间变换1.75
h2 如果工作任务非常紧急,闯红灯是可以的1.51
h3 如果有其他人违反了交通规则,可以跟着一起行动1.46
h4 为了超过缓慢的车流,违反某些交通规则是可以的1.56
h5 为了个人目的可以违反某些交通规则1.43

表3

风险行为量表"

量表题目及信度均值
K道路行驶失误(α=0.82)1.61
k1当接近路口或小区门口时不减速1.7
k2骑行期间经常与其他骑行者或行人发生身体接触1.65
k3转弯时不减速1.47
L 道路行驶错误(α=0.87)1.62
l1跟车太近1.5
l2骑车时不带头盔1.73
l3在机动车道上行驶1.58
l4在道路的另一侧逆向行驶1.46
l5骑车时使用手机1.82
M 超速违规(α=0.86)1.53
m1喜欢比其他车辆骑得更快1.56
m2在晚上或者凌晨超速骑行1.37
m3在人流密集的地方也尽可能保持速度1.55
m4任务紧急时会保持最高速度骑行1.62
N 红灯违规(α=0.81)2.3
n1当路上的车流量非常少的时候会忽略红灯2.44
n2等待红灯时感觉很不耐烦1.87
n3如果其他人一起闯红灯,我会跟上去2.58

图2

高频风险行为"

图3

四类风险行为的相关因素模型结构"

表4

四模型拟合指标"

模型χ2/dfGFIAGFICFIRMSEA
失误模型2.8120.9380.9210.96700.045
错误模型2.8560.9310.9140.96320.045
超速模型2.7130.9350.9180.96700.044
红灯模型2.3870.950.9350.97700.039

图4

四类风险行为的相关因素模型的路径结果"

表5

四模型因素影响效应"

因素影响效应β
失误K错误L超速M红灯N
焦虑-0.0090.0470.0290.144
愤怒0.3320.2750.3090.052
无规范感0.1640.0400.0930.231
利他-0.209-0.215-0.1560.069
工作乐趣-0.0390.0670.052-0.432
风险感知0.205-0.311-0.1370.729
骑行自信-0.137-0.142-0.151-0.051
不安全态度0.5770.5980.6550.214

表6

考虑风险行为差异的风险因素影响效应"

因素考虑风险行为差异的因素影响效应β'权重W
失误K错误L超速M红灯N
综合得分0.3670.1760.3210.136
焦虑-0.0170.0890.0550.2720.236
愤怒0.2320.1920.2160.0360.087
无规范感0.1310.0320.0740.1840.100
利他-0.078-0.080-0.0580.0260.047
工作乐趣-0.1000.1720.133-1.1090.321
风险感知0.205-0.311-0.1370.7290.125
骑行自信-0.046-0.047-0.050-0.0170.042
不安全态度0.1980.2060.2250.0740.043
1 傅志寰, 孙永福, 翁孟勇, 等. 交通强国战略研究[M]. 北京: 人民交通出版社, 2019.
2 严新平, 吴兵, 贺宜, 等. 我国零死亡愿景交通安全理念[J]. 交通信息与安全, 2019(1): 1-6.
Yan Xin-ping, Wu Bing, He Yi, et al. A study of "Version Zero" concept of transportation safety and its implementation strategies in China[J]. Journal of Transport Information and Safety, 2019(1): 1-6.
3 第一物流研究院. 电动三轮车在快递行业使用情况报告[R]. 北京: 现代物流报, 2016.
4 Zhang G, Yau K K W, Chen G. Risk factors associated with traffic violations and accident severity in China[J]. Accident Analysis & Prevention, 2013, 59: 18-25.
5 Vlahogianni E I, Yannis G, Golias J C. Overview of critical risk factors in power-two-wheeler safety[J]. Accident Analysis & Prevention, 2012, 49: 12-22.
6 Johnson P, Brooks C, Savage H. Fatal and Serious Road Crashes Involving Motorcyclists[M]. Australia: Department of Infrastructure, Transport, Regional Development and Local Government, 2008.
7 Zambon F, Hasselberg M. Factors affecting the severity of injuries among young motorcyclists-a Swedish nationwide cohort study[J]. Traffic Injury Prevention, 2006, 7: 143-149.
8 江亮, 贺宜. 电动两轮车风险驾驶行为及事故影响因素分析[J]. 吉林大学学报: 工学版, 2019, 49(4): 1107-1113.
Jiang Liang, He Yi. Risky driving behavior and influencing factors for electric two-wheeler[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1107-1113.
9 Reason J, Manstead A, Stradling S, et al. Errors and violations on the roads: a real distinction?[J]. Ergonomics, 1990, 33(10/11): 1315-1332.
10 Westerman S J, Haigney D. Individual differences in driver stress, error and violation[J]. Personality and Individual Differences, 2000, 29(5): 981-998.
11 Chen C. Personality, safety attitudes and risky driving behaviors—evidence from young Taiwanese motorcyclists[J].Accident Analysis & Prevention, 2009, 41(5): 963-968.
12 Wang C, Xu C, Xia J, et al. The effects of safety knowledge and psychological factors on self-reported risky driving behaviors including group violations for e-bike riders in China[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 56: 344-353.
13 Ulleberg P, Rundmo T. Personality, attitudes and risk perception as predictors of risky driving behaviour among young drivers[J]. Safety Science, 2003, 41(5): 427-443.
14 Starkey N J, Isler R B.The role of executive function, personality and attitudes to risks in explaining self-reported driving behaviour in adolescent and adult male drivers[J].Transportation Research Part F:Traffic Psychology and Behaviour,2016,38:127-136.
15 Yao L, Wu C. Traffic safety for electric bike riders in china: attitudes, risk perception, and aberrant riding behaviors[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2314(1): 49-56.
16 Mallia L, Lazuras L, Violani C, et al. Crash risk and aberrant driving behaviors among bus drivers: the role of personality and attitudes towards traffic safety[J]. Accident Analysis & Prevention, 2015, 79: 145-151.
17 Wong J, Chung Y, Huang S. Determinants behind young motorcyclists' risky riding behavior[J]. Accident Analysis & Prevention, 2010, 42(1): 275-281.
18 Johnson J A. Measuring thirty facets of the five factor model with a 120-item public domain inventory: development of the IPIP-NEO-120[J]. Journal of Research in Personality, 2014(51): 78-89.
19 Goldbery L R. The development of markers for the big-five factor structure[J]. Psychological Assessment, 1992, 4(1): 26-42.
20 Anderson J C, Gerbing D W. Structural equation modeling in practice: a review and recommended two-step approach[J]. Psychological Bulletin, 1988, 103(3): 411-423.
21 秦浩, 陈景武. 结构方程模型原理及其应用注意事项[J]. 中国卫生统计, 2006(4): 367-369.
Qin Hao, Chen Jing-wu. Principles and application considerations of structural equation model[J]. Chinese Journal of Health Statistics, 2006(4): 367-369.
22 Hooper D, Coughlan J, Mullen M R. Structural equation modelling: guidelines for determining model fit[J]. Electronic Journal of Business Research Methods, 2008, 1(6): 53-60.
23 Papantoniou P, Antoniou C, Yannis G, et al. Which factors affect accident probability at unexpected incidents? A structural equation model approach[J]. Journal of Transportation Safety & Security, 2019, 11(5): 544-561.
24 吴超仲, 万平, 张晖, 等. 交通从众行为研究——机遇与挑战[J]. 交通信息与安全, 2013, 31(2): 1-5.
Wu Chao Zhong, Wan Ping, Zhang Hui, et al. Traffic conformity behavior research—opportunity and challenge[J]. Journal of Transport Information and Safety, 2013, 31(2): 1-5.
25 董春娇,董黛悦,诸葛承祥,等.电动自行车出行特性及骑行决策行为建模[J].吉林大学学报:工学版,2022, 52(11): 2618-2625.
Dong Chun-jiao, Dong Dai-yue, Cheng-xiang Zhu-ge, et al. Trip characteristics and decision⁃making behaviors modeling of electric bicycles riding[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2618-2625.
[1] 潘恒彦,张文会,梁婷婷,彭志鹏,高维,王永岗. 基于MIMIC与机器学习的出租车驾驶员交通事故诱因分析[J]. 吉林大学学报(工学版), 2023, 53(2): 457-467.
[2] 朱洁玉,马艳丽. 合流区域多车交互风险实时评估方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1574-1581.
[3] 彭涛,方锐,刘兴亮,王海玮,庞彦伟,许洪国,刘福聚,王涛. 基于典型事故场景的雪天高速换道自动驾驶策略[J]. 吉林大学学报(工学版), 2022, 52(11): 2558-2567.
[4] 程国柱,程瑞,徐亮,张文会. 基于乘员伤害分析的公路路侧事故风险评价[J]. 吉林大学学报(工学版), 2021, 51(3): 875-885.
[5] 江亮,贺宜. 电动两轮车风险驾驶行为及事故影响因素分析[J]. 吉林大学学报(工学版), 2019, 49(4): 1107-1113.
[6] 王露,刘玉雯,陈红. 侧风下峡谷桥隧连接段汽车的行驶特性[J]. 吉林大学学报(工学版), 2019, 49(3): 736-748.
[7] 代存杰,李引珍,马昌喜,柴获,牟海波. 不确定条件下危险品配送路线多准则优化[J]. 吉林大学学报(工学版), 2018, 48(6): 1694-1702.
[8] 侯现耀, 陈学武. 基于态度的公交出行信息使用市场细分[J]. 吉林大学学报(工学版), 2018, 48(1): 98-104.
[9] 王芳荣, 郭柏苍, 金立生, 高琳琳, 岳欣羽. 次任务驾驶安全评价指标筛选及其权值计算[J]. 吉林大学学报(工学版), 2017, 47(6): 1710-1715.
[10] 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744.
[11] 李显生, 孟祥雨, 郑雪莲, 程竹青, 任圆圆. 非满载罐体内液体冲击动力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 737-743.
[12] 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报(工学版), 2017, 47(3): 751-755.
[13] 徐进, 陈薇, 周佳, 罗骁, 邵毅明. 汽车转向盘操作与驾驶负荷的相关性[J]. 吉林大学学报(工学版), 2017, 47(2): 438-445.
[14] 郭应时, 付锐, 赵凯, 马勇, 袁伟. 驾驶人换道意图实时识别模型评价及测试[J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844.
[15] 孙璐, 徐建, 崔相民. 面板数据模型分析及交通事故预测[J]. 吉林大学学报(工学版), 2015, 45(6): 1771-1778.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[5] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[9] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[10] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .