吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 737-743.doi: 10.13229/j.cnki.jdxbgxb201703007

• • 上一篇    下一篇

非满载罐体内液体冲击动力学特性

李显生1, 孟祥雨1, 郑雪莲1, 程竹青2, 任圆圆1   

  1. 1.吉林大学 交通学院,长春 130022;
    2.北京汽车股份有限公司 汽车研究院,北京 101300
  • 出版日期:2017-05-20 发布日期:2017-05-20
  • 通讯作者: 郑雪莲(1987-),女,讲师,博士.研究方向:车辆行驶可靠性与安全技术.E-mail:zhengxuelian@jlu.edu.cn
  • 作者简介:李显生(1965-),男,教授,博士生导师.研究方向:车辆行驶可靠性与安全技术.E-mail:lixs@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51375200)

Dynamic characteristics of liquid sloshing in partially-filled tank

LI Xian-sheng1, MENG Xiang-yu1, ZHENG Xue-lian1, CHENG Zhu-qing2, REN Yuan-yuan1   

  1. 1.College of Transportation, Jilin University, Changchun 130022, China;
    2.R&D Center,BAIC Motor Co., Ltd.,Beijing 101300,China
  • Online:2017-05-20 Published:2017-05-20

摘要: 为了解汽车罐车的行驶稳定性、探索有效的行驶稳定性控制策略,对圆形和椭圆形横截面罐体内的液体冲击进行了仿真模拟,并借助时域和频域分析了非满载罐体内液体冲击的动力学特性。结果表明:液体冲击在时域内呈周期性;其奇数阶振荡模态是非对称波,会使液体质心发生位移,而偶数阶振荡模态是对称波,不会使液体质心发生位移。而且,一阶共振频率是液体冲击的主导频率。充液比和外界激励是影响液体冲击动力学特性的主要因素。当充液比一定时,外界激励的增加使液体冲击的非线性增强、冲击力增大;当外界激励一定时,充液比的增大也会使液体冲击的非线性增强。

关键词: 交通运输安全工程, 汽车罐车, 液体冲击, 时域和频域分析, 动力学特性

Abstract: In order to understand the handling stability of tanker and explore effective stability control strategy, the liquid sloshing in partially-filled tanks with circular or elliptical cross-section is simulated using FLUENT, and the corresponding parameters are recorded. Then, the recorded data are processed in time and frequency domains. It is discovered that liquid sloshing presents periodic characteristics. The odd oscillation modes have asymmetrical waves, which contribute to the moving of the gravity center of liquid. Besides, the first oscillation mode contributes most to the moving of the gravity center. At the same time, the even oscillation modes have symmetrical waves, which do not contribute to the moving of the gravity center of liquid. It is also found that the filling percentage of liquid and external excitation are the main factors. The growth of the external excitation increases the nonlinear feature of liquid sloshing. Also, the growth of the liquid filling level also increases the nonlinear characteristics of liquid sloshing.

Key words: engineering of communications and transportation safety, tank vehicles, liquid sloshing, time domain and frequency domain analysis, dynamic characteristics

中图分类号: 

  • U469.61
[1] 刘凯峥,刘浩学,晏远春,等. 罐体车辆道路运输危险品事故特征分析[J]. 安全与环境学报,2010,10(3): 130-133.
Liu Kai-zheng, Liu Hao-xue, Yan Yuan-chun,et al. Analysis of the road accidents with tank-vehicle transportation of hazardous materials[J]. Journal of Safety and Environment,2010,10(3):130-133.
[2] Modaressi-Tehrani K, Pakheja S, Sedaghati R. Analysis of the overturning moment caused by transient liquid slosh inside a partly filled moving tank[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2006,220(3):289-301.
[3] 郑雪莲,李显生,任园园,等. 瞬时液体冲击对汽车罐车侧倾稳定性的影响[J]. 吉林大学学报:工学版,2014,44(3):625-630.
Zheng Xue-lian, Li Xian-sheng, Ren Yuan-yuan, et al. Roller stability analysis of tank vehicle impacted by transient liquid sloshing[J]. Journal of Jilin University (Engineering and Technology Edition),2014,44(3):625-630.
[4] Sciortino G, Adduce C, La Rocca M. Sloshing of a layered fluid with a free surface as a Hamiltonian system[J]. Physics of Fluids,2009,21(5):052102.
[5] Dai L, Xu L, Setiawan B. A new non-linear approach to analysing the dynamic behaviour of tank vehicles subjected to liquid sloshing[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,2005,219(1):75-86.
[6] Qing L, Xingrui M, Tianshu W. Equivalent mechanical model for liquid sloshing during draining[J]. Acta Astronautica,2011,68(1/2):91-100.
[7] Love J S, Tait M J. Equivalent linearized mechanical model for tuned liquid dampers of arbitrary tank shape[J]. Journal of Fluids Engineering,2011,133(6):061105.
[8] Akyildiz H. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank[J]. Journal of Sound & Vibration,2012,331(1):41-52.
[1] 代存杰,李引珍,马昌喜,柴获,牟海波. 不确定条件下危险品配送路线多准则优化[J]. 吉林大学学报(工学版), 2018, 48(6): 1694-1702.
[2] 赵伟强, 封冉, 宗长富. 基于等效晃动模型的液罐车防侧翻控制策略[J]. 吉林大学学报(工学版), 2018, 48(1): 30-35.
[3] 王芳荣, 郭柏苍, 金立生, 高琳琳, 岳欣羽. 次任务驾驶安全评价指标筛选及其权值计算[J]. 吉林大学学报(工学版), 2017, 47(6): 1710-1715.
[4] 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744.
[5] 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报(工学版), 2017, 47(3): 751-755.
[6] 徐进, 陈薇, 周佳, 罗骁, 邵毅明. 汽车转向盘操作与驾驶负荷的相关性[J]. 吉林大学学报(工学版), 2017, 47(2): 438-445.
[7] 郭应时, 付锐, 赵凯, 马勇, 袁伟. 驾驶人换道意图实时识别模型评价及测试[J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844.
[8] 孙璐, 徐建, 崔相民. 面板数据模型分析及交通事故预测[J]. 吉林大学学报(工学版), 2015, 45(6): 1771-1778.
[9] 王喆, 杨柏婷, 刘昕, 刘群, 宋现敏. 基于模糊聚类的驾驶决策判别[J]. 吉林大学学报(工学版), 2015, 45(5): 1414-1419.
[10] 马勇, 石涌泉, 付锐, 郭应时. 驾驶人分心时长对车道偏离影响的实车试验[J]. 吉林大学学报(工学版), 2015, 45(4): 1095-1101.
[11] 徐建, 孙璐. 解决交通事故数据分析中零值问题的模型[J]. 吉林大学学报(工学版), 2015, 45(3): 769-775.
[12] 金立生, 王岩, 刘景华, 王亚丽, 郑义. 基于Adaboost算法的日间前方车辆检测[J]. 吉林大学学报(工学版), 2014, 44(6): 1604-1608.
[13] 郑雪莲,李显生,任园园,杨猛. 瞬时液体冲击对汽车罐车侧倾稳定性的影响[J]. 吉林大学学报(工学版), 2014, 44(3): 625-630.
[14] 金立生,牛清宁,刘景华,秦彦光,吕欢欢. 不同道路线形下驾驶人认知分散状态监测[J]. 吉林大学学报(工学版), 2014, 44(3): 642-647.
[15] 詹伟, 吕庆, 尚岳全. 高速公路隧道群交通事故灰色马尔可夫预测[J]. 吉林大学学报(工学版), 2014, 44(01): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王郭俊, 许洪国, 刘宏飞. 双半挂汽车列车转弯运动轨迹仿真分析[J]. 吉林大学学报(工学版), 2018, 48(2): 415 -422 .
[2] 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报(工学版), 2017, 47(3): 751 -755 .