吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (2): 593-600.doi: 10.13229/j.cnki.jdxbgxb20210200

• 通信与控制工程 • 上一篇    

基于混沌麻雀搜索算法的TDOA/FDOA定位

国强(),朱国会,李万臣   

  1. 哈尔滨工程大学 信息与通信工程学院,哈尔滨 150001
  • 收稿日期:2021-03-15 出版日期:2023-02-01 发布日期:2023-02-28
  • 作者简介:国强(1972-),男,教授,博士. 研究方向:雷达电子对抗.E-mail: guoqiang@hrbeu.edu.cn
  • 基金资助:
    国家重点研发计划战略性国际科技创新合作重点专项项目(2018YFE0206500);国家自然科学基金项目(62071140)

TDOA/FDOA localization based on chaotic sparrow search algorithm

Qiang GUO(),Guo-hui ZHU,Wan-chen LI   

  1. College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:2021-03-15 Online:2023-02-01 Published:2023-02-28

摘要:

针对在实际定位场景中,接收站常被安装在运动平台上,导致其运动状态信息存在随机误差,而目标源定位精度对接收站的位置信息非常敏感,接收站位置的微小误差会导致目标源位置估计存在较大误差的问题,本文在考虑接收站位置信息存在随机误差的情况下,提出了一种使用到达时间差和到达频率差测量值定位移动源的解决方案。该方法通过在麻雀搜索算法中引入Logistic混沌映射对目标进行定位跟踪,Logistic混沌映射可以降低算法收敛到局部最优的风险,用以解决站址误差较低的情况下定位精度差的问题。仿真结果分析表明:在低站址误差的情况下,本文算法的定位精度比半定规划-重构线性化技术(SDP-RLT)、遗传算法、麻雀搜索算法和蚁群算法更接近克拉美罗下界。

关键词: 信息处理技术, 到达时间差, 到达频率差, 麻雀搜索算法, Logistic混沌映射

Abstract:

In the actual localization scenarios, the receiving station is usually installed on the moving platform, which leads to the random error in its moving state information. However, the target source location accuracy is very sensitive to the location information of the receiving station, and the small error in the location of the receiving station will lead to a large error in the estimation of the target source position. Therefore, considering the random error of the location information of the receiving station, a solution to locate the mobile source using the measured values of the time difference of arrival and the frequency difference of arrival is proposes in this paper. Logistic chaotic mapping is introduced into sparrow search algorithm to locate and track the target. Logistic chaotic mapping can reduce the risk of the algorithm convergence to local optimal, so as to solve the problem of poor localization accuracy in the case of low sensor position error. The analysis of simulation results shows that the accuracy of the proposed algorithm is closer to the Cramer-Rao lower bound than that of semi-definite programming and reformulation linearization technique(SDP-RLT), genetic algorithm, sparrow search algorithm and ant colony algorithm under the condition of low sensor position error.

Key words: information processing technology, time difference of arrival, frequency difference of arrival, sparrow search algorithm, logistic chaotic mapping

中图分类号: 

  • TP277

图1

σ取不同值时αt的分布情况"

图2

αt随σ和α0数值变化的分布情况"

表1

接收站和目标源的位置及速度"

接收站及近场源xiyizix˙iy˙iz˙i
130010015030-2020
2400150100-301020
330050020010-2010
4350200100102030
5-100-100-100-201010
近场源600650550-201540

图3

CSSA和SSA两种算法的收敛曲线对比"

图4

5种算法在近场源中的定位RMSE曲线"

图5

5种算法在近场源中的定位Bias曲线"

1 Hao B J, Gu L M, Li Z, et al. Passive radar source localisation based on PSAAA using single small size aircraft[J]. IET Radar Sonar and Navigation, 2016, 10(7): 1191-1200.
2 Wang Y, Ho K C. TDOA source localization in the presence of synchronization clock bias and sensor position errors[J]. IEEE Transactions on Signal Processing, 2013, 61(18): 4532-4544.
3 王柯, 刘富, 康冰, 等. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报: 工学版, 2018, 48(2): 633-639.
Wang Ke, Liu Fu, Kang Bin,et al. Bionic hypocenter localization method inspired by sand scorpion in locating preys[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 633-639.
4 肖金红, 刘智, 杨阳, 等. 基于CDMA-TDOA的室内超声波定位系统[J]. 吉林大学学报: 信息科学版, 2012, 30(2): 213-217.
Xiao Jin-Hong, Liu Zhi, Yang Yang, et al. Indoor ultrasonic positioning system based on CDMA-TDOA[J]. Journal of Jilin University (Information Science Edition), 2012, 30(2): 213-217.
5 Cao Y, Peng L, Li J, et al. A new iterative algorithm for geolocating a known altitude target using TDOA and FDOA measurements in the presence of satellite location uncertainty[J]. Chinese Journal of Aeronautics, 2015, 28(5): 1510-1518.
6 Ho K C, Xu W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2453-2463.
7 Wang Y, Wu Y. An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements[J]. IEEE Communications Letters, 2017, 21(1): 80-83.
8 Wang G, Li Y M, Ansari N. A semidefinite relaxation method for source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 853-862.
9 Mohamed A E A. Source localization using TDOA and FDOA measurements based on modified cuckoo search algorithm[J]. Wireless Networks, 2017, 23(2): 487-495.
10 蒋伊琳, 刘梦楠, 郜丽鹏, 等. 运动多站无源时差/频差联合定位方法[J]. 系统工程与电子技术, 2019, 41(7): 1441-1449.
Jiang Yi-Lin, Liu Meng-Nan, Gao Li-Peng, et al. Joint passive location method of TDOA and FDOA for moving multi-station[J]. Systems Engineering and Electronics, 2019, 41(7): 1441-1449.
11 Yu H, Huang G, Gao J. Constrained total least-squares localisation algorithm using time difference of arrival and frequency difference of arrival measurements with sensor location uncertainties[J]. IET Radar Sonar and Navigation, 2012, 6(9): 891-899.
12 Weng Y, Xiao W D, Xie L H. Total least squares method for robust source localization in sensor networks using TDOA measurements[J]. International Journal of Distributed Sensor Networks, 2011(1):172902.
13 Zheng Z, Zhang H W, Wang W Q, et al. Source localization using TDOA and FDOA measurements based on semidefinite programming and reformulation linearization[J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2019, 356(18): 11817-11838.
14 Ho K C, Lu X, Kovavisaruch L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684-696.
15 Sun M, Ho K C. An asymptotically efficient estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor location uncertainties[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3434-3440.
16 高向颖, 赵拥军, 刘智鑫, 等. 存在站址误差下的时频差稳健定位算法[J]. 雷达学报, 2020, 9(5): 916-924.
Gao Xiang-ying, Zhao Yong-jun, Liu Zhi-xin, et al. Robust source localization using TDOA and FDOA with receiver location errors[J]. Journal of Radars, 2020, 9(5): 916-924.
17 Xue J K, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
18 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720.
Lv Xin, Mu Xiao-dong, Zhang Jun, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720.
19 包贤哲, 丁稳房, 宋阿妮. 混沌压缩非线性粒子群算法求解车间调度问题[J]. 现代制造工程, 2020(9): 15-22, 52.
Bao Xian-zhe, Ding Wen-fang, Song A-ni. Chaotic compression nonlinear particle swarm optimization algorithm for job shop scheduling problem[J]. Modern Manufacturing Engineering, 2020(9): 15-22, 52.
20 刘道华, 原思聪, 兰洋, 等. 混沌映射的粒子群优化方法[J]. 西安电子科技大学学报, 2010, 37(4): 764-769.
Liu Dao-hua, Yuan Si-cong, Lan Yang, et al. Method of particle swarm optimization based on the chaos map[J]. Journal of Xidian University, 2010, 37(4): 764-769.
[1] 王生生,李晨旭,王翔宇,姚志林,刘一申,吴佳倩,杨晴然. 基于改进残差胶囊网络和麻雀搜索的脑瘤图像分类[J]. 吉林大学学报(工学版), 2022, 52(11): 2653-2661.
[2] 王德兴,吴若有,袁红春,宫鹏,王越. 基于多尺度注意力融合和卷积神经网络的水下图像恢复[J]. 吉林大学学报(工学版), 2021, 51(4): 1396-1404.
[3] 李厚杰,王法胜,贺建军,周瑜,李威,窦宇轩. 基于伪样本正则化Faster R⁃CNN的交通标志检测[J]. 吉林大学学报(工学版), 2021, 51(4): 1251-1260.
[4] 蒋华伟,杨震,张鑫,董前林. 图像去雾算法研究进展[J]. 吉林大学学报(工学版), 2021, 51(4): 1169-1181.
[5] 金静,党建武,王阳萍,申东. 融合模糊统计纹理特征的多线索粒子滤波跟踪[J]. 吉林大学学报(工学版), 2021, 51(3): 1111-1120.
[6] 郭继昌,乔珊珊. 基于深度图的水下图像复原[J]. 吉林大学学报(工学版), 2021, 51(2): 677-684.
[7] 刘国华,周文斌. 基于卷积神经网络的脉搏波时频域特征混叠分类[J]. 吉林大学学报(工学版), 2020, 50(5): 1818-1825.
[8] 王柯俨,王迪,赵熹,陈静怡,李云松. 基于卷积神经网络的联合估计图像去雾算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1771-1777.
[9] 史再峰,李金卓,曹清洁,李慧龙,胡起星. 基于生成对抗网络的低剂量能谱层析成像去噪算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1755-1764.
[10] 谌华,郭伟,闫敬文,卓文浩,吴良斌. 基于深度学习的SAR图像道路识别新方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1778-1787.
[11] 张薇,韩勇,金铭,乔晓林. 基于托普利兹矩阵集重构的相干信源波达方向估计[J]. 吉林大学学报(工学版), 2020, 50(2): 703-710.
[12] 程艳芬,姚丽娟,袁巧,陈先桥. 水下视频图像清晰化方法[J]. 吉林大学学报(工学版), 2020, 50(2): 668-677.
[13] 于晓辉,张志成,李新波,孙晓东. 基于状态空间模型的指数衰减正弦信号参数估计[J]. 吉林大学学报(工学版), 2019, 49(6): 2083-2088.
[14] 刘富, 权美静, 王柯, 刘云, 康冰, 韩志武, 侯涛. 仿蝎子振源定位机理的位置指纹室内定位方法[J]. 吉林大学学报(工学版), 2019, 49(6): 2076-2082.
[15] 马子骥,卢浩,董艳茹. 双通道单图像超分辨率卷积神经网络[J]. 吉林大学学报(工学版), 2019, 49(6): 2089-2097.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[9] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[10] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .