吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (4): 1133-1138.doi: 10.13229/j.cnki.jdxbgxb.20210206

• 交通运输工程·土木工程 • 上一篇    

回热对低温大质流密度实验系统能耗影响

徐振军1(),张瑞凤1,2,陈嘉祥2,张晓慧3,密晓光3,陈杰3,陈林2,4()   

  1. 1.青岛农业大学 建筑工程学院,山东 青岛 266109
    2.中国科学院 工程热物理研究所,北京 100190
    3.中海石油气电集团 研发中心,北京 100028
    4.中国科学院大学 航空宇航学院,北京 100049
  • 收稿日期:2021-03-16 出版日期:2023-04-01 发布日期:2023-04-20
  • 通讯作者: 陈林 E-mail:xuzhenjun@qau.edu.cn;chenlin2018@iet.cn
  • 作者简介:徐振军(1980-),男,副教授,博士.研究方向:低温制冷和建筑节能.E-mail: xuzhenjun@qau.edu.cn
  • 基金资助:
    国家自然科学基金项目(52106033);中海石油气电集团有限责任公司研究项目(GP-YF-CB-2020-015);中国科学院前沿科学重点研究计划项目(ZDBS-LY-JSC018);中国科学院人才启动经费项目

Influence for backheating on low temperature high mass experimental system

Zhen-jun XU1(),Rui-feng ZHANG1,2,Jia-xiang CHEN2,Xiao-hui ZHANG3,Xiao-guang MI3,Jie CHEN3,Lin CHEN2,4()   

  1. 1.College of Civil Engineering & Architecture,Qingdao Agricultural University,Qingdao 266109,China
    2.Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China
    3.R&D Center,CNOOC Gas & Power Group,Beijing 100028,China
    4.School of Aeronautics and Astronautics,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-03-16 Online:2023-04-01 Published:2023-04-20
  • Contact: Lin CHEN E-mail:xuzhenjun@qau.edu.cn;chenlin2018@iet.cn

摘要:

以绕管式换热器为测试件,设计搭建了带回热的大质流密度流动传热特性实验系统。该实验系统包括主测试循环回路、冷却回路、控制系统和安全通风系统。本文实验系统能够覆盖的实验工况范围如下:蒸发压力为0.15~0.85 MPa,质流密度为20~120 kg/(m2·s),干度为0~1.0,热流密度为0~10 kW/m2,温度可达-180 ℃。构建了实验系统热力学模型,获得了实验工况条件下各节点温度、压力数据和设备负荷参数。对该系统能耗进行了对比分析,研究发现,有回热系统在各个干度情况下均比无回热系统的能耗低,干度为0.1时,能耗减少75%,在干度为0.5时,能耗减少43%,在干度为1时,能耗减少3%。

关键词: 动力工程, 工程热物理, 低温大质流密度, 回热, 能耗

Abstract:

In this paper, the experimental system for high mass flow density flow and heat transfer characteristics with heat back was designed and built with the wound tube heat exchanger as the test piece. The experimental system includes main test cycle circuit, cooling circuit, control system and safety ventilation system. The experimental conditions of the experimental system can cover 0.15~0.85 MPa evaporation pressure, 20~120 kg/(m2·s)mass flow density, 0~1.0 dryness and 0~10 kW/m2 heat flow density. The thermodynamic model of the experimental system is constructed, and the temperature, pressure data and equipment load parameters of each node under the experimental conditions are obtained. The energy consumption of the system is analyzed and compared with the existing data. It is found that the energy consumption of the regenerative system with back heat is lower than that of the non regenerative system in each dryness. When the dryness is 0.1, the energy consumption is reduced by 75%, when the dryness is 0.5, the energy consumption is reduced by 43%, and when the dryness is 1, the energy consumption is reduced by 3%.

Key words: power engineering, engineering thermophysics, low temperature high mass flow density, back heat, energy consumption

中图分类号: 

  • TB61

图1

低温大质流密度实验系统原理流程图"

图2

板翅式回热器"

表1

各节点状态计算结果"

节点编号预冷段液化段深冷段
温度/°C压力/MPa温度/°C压力/MPa温度/°C压力/MPa
130.000.1930.000.2230.000.24
240.001.5040.001.5040.001.50
320.561.45-14.541.45-85.021.45
410.001.42////
510.001.42-14.541.45//
6-25.001.93-25.001.42//
7-25.001.93-25.001.42-85.021.45
8-54.321.29-137.911.32-172.451.35
9-53.950.26-137.380.29-172.000.31
10-32.420.25-51.560.28-172.000.31
11-30.520.24-49.770.27-109.140.29
1230.000.1930.000.2230.000.24

表2

各设备负荷计算结果 (kW)"

设备名称预冷段液化段深冷段
隔膜压缩机59.4177.68101.98
气化回热器28.0639.7182.40
一级冷却换热器59.88--
二级冷却换热器47.2625.66-
三级冷却换热器19.40149.39143.66
干度调节电热器129.69174.67140.76

图3

预冷段有无回热能耗对比"

图4

预冷段液氮流量对比"

图5

不同干度下回热器热侧出口工质温度"

1 胡宗杰,肖春江,李治龙,等. 基于超声雾化的碳氢燃料多液滴流制备系统[J]. 吉林大学学报: 工学版,2012,42(4): 871-876.
Hu Zong-jie, Xiao Chun-jiang, Li Zhi-long, et al. Multi-droplet stream creating system of hydrocarbon fuel based on ultrasonic atomization technology[J]. Journal of Jilin University(Engineering and Technology Edition), 2012,42(4): 871-876.
2 牛亚楠. 多元混合制冷剂小型天然气液化装置的模拟研究[D]. 上海: 同济大学机械工程学院, 2007.
Niu Ya-nan. Heat balance test and energy-saving assessment of a industrial glass furnace[D]. Shanghai: School of Mechanical Engineering, Tongji University, 2007.
3 傅佳宏,俞小莉,药凌宇, 等,工程机械独立式冷却模块流动传热仿真对比 [J]. 吉林大学学报: 工学版,2016,46(2): 451-456.
Fu Jia-hong, Yu Xiao-li, Yao Ling-yu, et al. Numerical comparison of flow and heat transfer in detached cooling module for construction machinery[J]. Journal of Jilin University(Engineering and Technology Edition), 2016,46(2): 451-456.
4 孙崇正, 李玉星, 韩辉, 等. 海况倾斜条件下DMR液化工艺中绕管式换热器运行可靠性研究[J]. 油气地面工程, 2019, 38(10): 49-56.
Sun Chong-zheng, Li Yu-xing, Han Hui, et al. Operation reliability study on spiral wound heat exchanger of DMR liquefaction process under wave tilt conditions[J]. Oil-Gas Field Surface Engineering, 2019, 38(10): 49-56.
5 肖娟, 简冠平, 王家瑞. 缠绕管式换热器性能及应用研究进展[J]. 化工机械, 2016, 43(4): 423-428.
Xiao Juan, Jian Guan-ping, Wang Jia-rui. Progress in performance and application study for wound-tube heat Exchanger[J]. Chemical Engineering & Machinery, 2016, 43(4): 423-428.
6 Hasan M M, Karimi I A, Alfadala H E, et al. Operational modeling of multi-stream heat exchangers with phase changes[J]. AIChE Journal, 2009, 55(1): 150-171.
7 Pacio J C, Dorao C A. A review on heat exchanger thermal hydraulic models for cryogenic applications[J]. Cryogenics, 2011, 51(7): 366-379.
8 玄哲浩,程崟,崔淑琴. 换热器性能试验测控系统[J].吉林大学学报: 工学版, 2003, 33(1): 53-55.
Xuan Zhe-hao, Cheng Yin, Cui Shu-qin. Control unit for heat exchanger performance test system[J]. Journal of Jilin University(Engineering and Technology Edition), 2003, 33(1): 53-55.
9 Neeraas B O, Fredheim A O, Aunan B. Experimental data and model for heat transfer, in liquid falling film flow on shell-side, for spiral-wound LNG heat exchanger[J]. International Journal of Heat and Mass Transfer, 2004, 47(14-16): 3565-3572.
10 朱建鲁, 常学煜, 韩辉, 等. FLNG绕管式换热器晃动实验分析[J]. 化工学报, 2017, 68(9): 3358-3367.
Zhu Jian-lu, Chang Xue-yu, Han Hui, et al. Experimental study on effect of sloshing on performance of heat exchanger[J]. CIESC Journal, 2017, 68(9): 3358-3367.
11 李丰志, 于佳文, 鹿来运, 等. LNG绕管式换热器管侧流动与传热实验台设计及验证[J]. 哈尔滨工业大学学报, 2017, 49(2): 98-102.
Li Feng-zhi, Yu Jia-wen, Lu Lai-yun, et al. Design and verification for tube- side flow and heat transfer test-rig of coil-wound LNG heat exchangers[J]. Journal of Harbin Institute of Technology, 2017, 49(2): 98-102.
12 王刚, 巨永林. 用于天然气液化流程的组合式低温热管换热器的实验测试[J]. 化工学报, 2015, 66(): 123-131.
Wang Gang, Ju Yong-lin. Experimental investigation of hybrid cryogenic heat pipe heat exchanger in LNG process[J]. CIESC Journal, 2015, 66(Sup.2): 123-131.
13 Sun C Z, Li Y X, Han H, Zhu J L. Experimental research on the adaptability of liquid natural gas spiral wound heat exchanger in dual mixed refrigeration liquefaction process[J]. Experimental Thermal and Fluid Science, 2018, 98: 124⁃136.
14 丁超, 胡海涛, 丁国良, 等. 运行工况对LNG绕管式换热器壳侧换热特性的影响[J]. 化工学报, 2018, 69(6): 2417-2423.
Ding Chao, Hu Hai-tao, Ding Guo-liang, et al. Influences of working conditions on heat transfer characteristics in shell side of LNG spiral wound heat exchangers[J]. CIESC Journal, 2018, 69(6): 2417-2423.
15 Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Research, 1976, 15(1): 59-64.
[1] 杨子荣,李岩,冀雪峰,刘芳,郝冬. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981.
[2] 徐振军,王浩,赵开元,郝博轶,李清清,王常浩. 复合太阳能的燃气机热泵热力学性能[J]. 吉林大学学报(工学版), 2022, 52(8): 1759-1763.
[3] 赵同宾,吴宜胜,段耀宗,黄震,韩东. RP-3航空煤油的润滑特性和改善措施[J]. 吉林大学学报(工学版), 2022, 52(3): 533-540.
[4] 余剑武,陈亚玲,范光辉,胡仕港,包有玉. 锂电池并行流道液冷板结构设计和散热性能分析[J]. 吉林大学学报(工学版), 2022, 52(12): 2788-2795.
[5] 朱思峰,赵明阳,柴争义. 边缘计算场景中基于粒子群优化算法的计算卸载[J]. 吉林大学学报(工学版), 2022, 52(11): 2698-2705.
[6] 徐振军,王浩,王银成,张诺,陈孟,李清清. 微通道低温换热器流动传热性能[J]. 吉林大学学报(工学版), 2022, 52(10): 2294-2299.
[7] 滕文龙,丛炳虎,商云坤,张予宸,白天. 基于MEA⁃BP神经网络的建筑能耗预测模型[J]. 吉林大学学报(工学版), 2021, 51(5): 1857-1865.
[8] 潘凤文,弓栋梁,高莹,徐明伟,麻斌. 基于锂离子电池线性化模型的电流传感器故障诊断[J]. 吉林大学学报(工学版), 2021, 51(2): 435-441.
[9] 刘富,安毅,董博,李元春. 基于ADP的可重构机械臂能耗保代价分散最优控制[J]. 吉林大学学报(工学版), 2020, 50(1): 342-350.
[10] 孟育博, 李丕茂, 张幽彤, 王志明. 共轨系统压力波动和多次喷射油量偏差的抑制[J]. 吉林大学学报(工学版), 2018, 48(3): 760-766.
[11] 孙正, 黄钰期, 俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[12] 孟育博, 张幽彤, 王志明, 张晓晨, 樊利康, 李涛. 压电喷油器压电执行器热-电-机械耦合迟滞特性[J]. 吉林大学学报(工学版), 2018, 48(2): 480-485.
[13] 杨智勇, 吴功平, 王伟, 郭磊, 杨守东, 曹琪, 张义杰, 胡鹏. 高压巡检机器人下坡节能控速方法[J]. 吉林大学学报(工学版), 2017, 47(2): 567-576.
[14] 吴志军, 赵文伯, 张青. 基于热氛围燃烧器的湍流射流起升火焰基础研究进展[J]. 吉林大学学报(工学版), 2016, 46(6): 1881-1891.
[15] 崔金生, 侯绪研, 邓宗全, 潘万竞, 姜生元. 真空颗粒系统有效导热系数测量试验台研制及试验[J]. 吉林大学学报(工学版), 2016, 46(2): 457-464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!