吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2788-2795.doi: 10.13229/j.cnki.jdxbgxb20210434

• 车辆工程·机械工程 • 上一篇    下一篇

锂电池并行流道液冷板结构设计和散热性能分析

余剑武1(),陈亚玲1,范光辉2,胡仕港1,包有玉1   

  1. 1.湖南大学 机械与运载工程学院,长沙 410082
    2.清华大学 深圳国际研究生院,广东 深圳 518055
  • 收稿日期:2021-05-17 出版日期:2022-12-01 发布日期:2022-12-08
  • 作者简介:余剑武(1968-),男,教授,博士生导师. 研究方向:电动汽车电池热管理. E-mail:yokenbu@hnu.edu.cn
  • 基金资助:
    湖南省交通科技项目(201834);湖南省自然科学基金项目(2020JJ4205)

Structural design and thermal dissipation performance analysis of liquid cooling plates with parallel flow channels for lithium batteries

Jian-wu YU1(),Ya-ling CHEN1,Guang-hui FAN2,Shi-gang HU1,You-yu BAO1   

  1. 1.College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082,China
    2.Shenzhen International Graduate School,Tsinghua University,Shenzhen 518055,China
  • Received:2021-05-17 Online:2022-12-01 Published:2022-12-08

摘要:

为探究并行流道液冷板的散热性能,采用计算流体力学(CFD)数值计算方法对液冷板进行三维稳态分析,对比研究了液冷板在不同冷却液流量、流道宽度、流道深度和强化传热结构下的散热性能、均温性能以及能耗性能。结果表明:增加流量在一定程度上可以提升液冷板的散热性能,但持续增大流量不仅会增加系统能耗,而且改善效果十分受限。流道宽度从中心向两侧递减变化、流道深度减小、布置强化传热结构的设计都有利于提高液冷系统的散热和均温性能;相对于等宽(A5)流道设计,整体布置强化传热结构(S1)的流道设计可使液冷板的平均温度和最大温差分别降低8.9 ℃和9.06 ℃。本文研究成果可为电池热管理系统的结构设计提供理论指导。

关键词: 车辆工程, 液冷板, 并行流道, 散热性能, 能耗, 强化传热结构

Abstract:

In order to study the thermal dissipation performance of a liquid-cooled plate with parallel channels, the three-dimensional steady-state analysis was performed by using CFD method. The effects of coolant flow rate, channel width, depth and layout of enhanced heat transfer structure on the performances of a liquid-cooled plate were contrastively investigated, including the thermal dissipation, the uniform temperature and energy consumption. The results indicate that the thermal dissipation performance is improved by increasing the coolant flow rate, but excessive flow rate leads to increased energy consumption and limited improvement effect. Designs of decreasing channel width from the center to two sides, decreasing channel depth and adding enhanced heat transfer structure are all beneficial to the thermal dissipation and temperature uniformity of the liquid cooling system. In addition, the design of wholly added enhanced heat transfer structure (S1) reduces the average temperature and maximum temperature difference by 8.9 °C and 9.06 °C respectively, compared with the design of equivalent channels width (A5). The conclusions provide a theoretical direction for structural design of battery thermal management system.

Key words: vehicle engineering, liquid cold plate, parallel channel, thermal dissipation performance, energy consumption, enhanced heat transfer structure

中图分类号: 

  • U469.72

图1

电池模组液冷单元"

图2

流道结构示意图"

图3

流道尺寸设计参数"

表1

流道宽度设计"

流道设计类型W1/mmW2/mmW3/mmW4/mmW5/mm
A134.827.620.413.26
A23427.2520.513.757
A331.626.220.815.410
A427.624.4521.318.1515
A52222222222

图4

强化传热结构排布"

表2

热物性参数"

系统ρ/(kg·m?3c/[J·(kg·K)?1k/[W·(m2·K)?1μ/(Pa·s)
模组2 35098012.8/12.8/2.6-
液冷板2 700900209-
导热材料2 2509601.5-
冷却液1 071.113 3000.3840.003 39

图5

理论与CFD的计算结果对比"

图6

不同流量下导热材料上表面温度变化"

图7

不同流量下液冷板流阻、传热系数和热阻变化"

图8

不同流道宽度下导热材料上表面温度变化"

图9

不同流道宽度下液冷板流阻、传热系数和热阻的变化"

图10

不同流道宽度下的温度分布"

图11

不同流道深度下导热材料上表面温度"

图12

不同深度时液冷板流阻、传热系数和热阻的变化"

图13

不同流道深度的导热材料温度分布"

图14

强化传热结构排布对导热材料上表面温度的影响"

图15

强化传热结构对液冷板流阻、传热系数和热阻的影响"

1 Fathabadi H. A novel design including cooling media for lithium-ion batteries pack used in hybrid and electric vehicles[J]. Journal of Power Sources, 2014, 245: 495-500.
2 Hua Y, Zhou S D, Cui H G, et al. A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles[J]. International Journal of Energy Research, 2020, 44: 11059-11087.
3 Börner M, Friesen A, Grützke M, et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 382-392.
4 An Z J, Jia L, Ding Y, et al. A review on lithium-ion power battery thermal management technologies and thermal safety[J]. Journal of Thermal Science, 2017, 26: 391-412.
5 Scrosati B, Garche J. Lithium batteries: status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
6 范光辉,余剑武,罗红,等. 混合动力汽车电池性能影响因素分析与试验[J]. 吉林大学学报:工学版, 2019, 49(5): 1451-1458.
Fan Guang-hui, Yu Jian-wu, Luo Hong, et al. Influencing factors analysis and experimental study of battery performances in hybrid electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5):1451-1458.
7 Situ W F, Yang X Q, Li X X, et al. Effect of high temperature environment on the performance of LiNi0.5Co0.2Mn0.3O2 battery[J]. International Journal of Heat & Mass Transfer, 2017, 104:743-748.
8 Feng X N, Zheng S Q, Ren D S, et al. Key characteristics for thermal runaway of li-ion batteries[J]. Energy Procedia, 2019, 158:4684-4689.
9 Petzl M, Kasper M, Danzer M A. Lithium plating in a commercial lithium-ion battery—a low-temperature aging study[J]. Journal of Power Sources, 2015, 275:799-807.
10 高青,王浩东,刘玉彬,等. 动力电池应急冷却喷管结构设计分析[J].吉林大学学报:工学版, 2021, 52(5): 981-988.
Gao Qing, Wang Hao-dong, Liu Yu-bin, et al. Analysis on nozzle design of power battery emergency cooling[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 52(5): 981-988.
11 Wang Y, Zhang G, Yang X. Optimization of liquid cooling technology for cylindrical power battery module[J]. Applied Thermal Engineering, 2019, 162: No.114200.
12 Tang Z G, Wang S C, Liu Z Q, et al. Numerical analysis of temperature uniformity of a liquid cooling battery module composed of heat-conducting blocks with gradient contact surface angles[J]. Applied Thermal Engineering, 2020, 178: No.115509.
13 Zhao C R, Sousa A C M, Jiang F M. Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2018, 129:660-670.
14 Sheng L, Su L, Zhang H, et al. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger[J]. International Journal of Heat & Mass Transfer, 2019, 141:658-668.
15 Patil M S, Seo J H, Panchal S, et al. Investigation on thermal performance of water-cooled li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate[J]. International Journal of Heat and Mass Transfer, 2020, 155: No.119728.
16 Xu X M, Tong G Y, Li R Z, et al. Numerical study and optimizing on cold plate splitter for lithium battery thermal management system[J]. Applied Thermal Engineering, 2020, 167: No.114787.
17 Siruvuri D V, Budarapu P R. Studies on thermal management of lithium-ion battery pack using water as the cooling fluid[J]. Journal of Energy Storage, 2020, 29: No.101377.
18 Deng T, Ran Y, Yin Y L, et al. Multi-objective optimization design of thermal management system for lithium-ion battery pack based on non-dominated sorting genetic algorithm II[J]. Applied Thermal Engineering, 2020, 164: No.114394.
[1] 王登峰,陈宏利,那景新,陈鑫. 单双搭接接头经高温老化后的失效对比[J]. 吉林大学学报(工学版), 2023, 53(2): 346-354.
[2] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[3] 王克勇,鲍大同,周苏. 基于数据驱动的车用燃料电池故障在线自适应诊断算法[J]. 吉林大学学报(工学版), 2022, 52(9): 2107-2118.
[4] 曹起铭,闵海涛,孙维毅,于远彬,蒋俊宇. 质子交换膜燃料电池低温启动水热平衡特性[J]. 吉林大学学报(工学版), 2022, 52(9): 2139-2146.
[5] 隗海林,王泽钊,张家祯,刘洋. 基于Avl-Cruise的燃料电池汽车传动比及能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2119-2129.
[6] 刘岩,丁天威,王宇鹏,都京,赵洪辉. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2168-2174.
[7] 李丞,景浩,胡广地,刘晓东,冯彪. 适用于质子交换膜燃料电池系统的高阶滑模观测器[J]. 吉林大学学报(工学版), 2022, 52(9): 2203-2212.
[8] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[9] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[10] 胡广地,景浩,李丞,冯彪,刘晓东. 基于高阶燃料电池模型的多目标滑模控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2182-2191.
[11] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
[12] 武小花,余忠伟,朱张玲,高新梅. 燃料电池公交车模糊能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2077-2084.
[13] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[14] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[15] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谭梅, 尹义龙, 杨卫辉. 基于区域水平的指纹纹线距离估计方法[J]. 吉林大学学报(工学版), 2005, 35(05): 537 -0541 .
[2] 裘建新, 王晰巍, 范晓春. 协同产品设计中计算机辅助设计系统与产品数据管理系统的信息集成[J]. 吉林大学学报(工学版), 2005, 35(05): 505 -0510 .
[3] 李永强,赵熹华,赵贺,李民,张伟华 . 预热温度对铝合金搭接激光焊
焊缝成形及组织的影响
[J]. 吉林大学学报(工学版), 2008, 38(05): 1065 -1068 .
[4] 安实,李静,崔娜 . ATIS环境下通勤者逐日出行路径更换行为仿真[J]. 吉林大学学报(工学版), 2009, 39(03): 587 -0592 .
[5] 段,孙同景,李振华, 黄长伟, 张光先. 全数字逆变电源IIR Butterworth数字滤波[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 311 -0314 .
[6] 金敬福, 马毅, 刘玉荣, 丛茜. 长耳鸮翼型组的气动特性分析[J]. 吉林大学学报(工学版), 2010, 40(增刊): 278 -0281 .
[7] 金立生,王荣本,高龙,郭烈. 基于区域生长的智能车辆阴影路径图像分割方法[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 132 -0135 .
[8] 王强,戴景民,何小瓦. 时间延迟对瞬态平面热源法测量热导率的影响[J]. 吉林大学学报(工学版), 2011, 41(03): 711 -715 .
[9] 麻凯1,2,管欣1,2,逄淑一1,2,詹军1,2. 悬架运动学特性一致性的区间控制方法[J]. 吉林大学学报(工学版), 2011, 41(4): 910 -914 .
[10] 于晓辉, 石要武. 色噪声背景下LFM信号参数估计的互谱ESPRIT方法[J]. 吉林大学学报(工学版), 2005, 35(05): 551 -0555 .