吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1264-1271.doi: 10.13229/j.cnki.jdxbgxb.20210877

• 车辆工程·机械工程 • 上一篇    

汽油/丁醇燃料燃烧动力学简化机理的构建和验证

吕德淋1(),周超1,韩东1,2()   

  1. 1.上海交通大学 动力机械与工程教育部重点实验室,上海 200240
    2.上海非碳基能源转换与利用研究院,上海 200240
  • 收稿日期:2021-09-05 出版日期:2023-05-01 发布日期:2023-05-25
  • 通讯作者: 韩东 E-mail:delin.lv@sjtu.edu.cn;dong_han@sjtu.edu.cn
  • 作者简介:吕德淋(1992-),男,博士研究生.研究方向:燃料/发动机交互作用.E-mail:delin.lv@sjtu.edu.cn
  • 基金资助:
    国家优秀青年科学基金项目(52022058)

Development and validation of reduced combustion mechanism for gasoline/butanol blends

De-lin LYU1(),Chao ZHOU1,Dong HAN1,2()   

  1. 1.Key Laboratory for Power Machinery and Engineering,Ministry of Education,Shanghai Jiao Tong University,Shanghai 200240,China
    2.Shanghai Non-carbon Energy Conversion and Utilization Institute,Shanghai 200240,China
  • Received:2021-09-05 Online:2023-05-01 Published:2023-05-25
  • Contact: Dong HAN E-mail:delin.lv@sjtu.edu.cn;dong_han@sjtu.edu.cn

摘要:

采用基于误差传递的直接关系图法和敏感性分析方法简化含有7714个基元反应和1765种组分的汽油/丁醇混合燃料详细机理,构建一个含有425个基元反应和96种组分的汽油/丁醇混合燃料的简化动力学机理。该简化机理含有正丁醇、异丁醇、叔丁醇和仲丁醇,以正庚烷/异辛烷/甲苯混合物作为汽油模型燃料。将简化机理预测的着火延迟、组分浓度和层流火焰速度与详细机理的预测值和实验数据进行比较,验证结果较好。最后,将该简化机理耦合到三维计算流体力学软件CONVERGE中,模拟汽油/丁醇混合燃料在发动机的燃烧过程。结果表明:构建的汽油/丁醇简化机动力学理可很好地捕捉火花点火式发动机的缸内燃烧过程。

关键词: 能源与动力工程, 简化机理, 化学动力学, 汽油/丁醇混合物, 发动机

Abstract:

A reduced combustion mechanism of gasoline/butanol blends containing 425 elementary reactions and 96 species was developed using direct relation graph with error propagation and sensitivity analysis, based on a detailed mechanism of gasoline/butanol containing 7714 elementary reactions and 1765 species. In this reduced mechanism, i-butanol, n-butanol, t-butanol and s-butanol sub-mechanisms are included, and the n-heptane/iso-octane/toluene mixtures are used as the gasoline model fuel. The ignition delay times, species concentration profiles and laminar flame speeds predicted by the reduced mechanism were compared with those predicted by the detailed mechanism and experimental data, with satisfactory agreement being observed. Finally, this reduced mechanism was used in a three-dimension computational fluid dynamics software CONVERGE to simulate the combustion processes of a spark-ignited engine fueled with gasoline/butanol blends. The results showed that the in-cylinder combustion behaviors in this spark-ignited engine could be well captured by this reduced mechanism.

Key words: energy and power engineering, reduced mechanism, chemical kinetics, gasoline/butanol blends, engines

中图分类号: 

  • TK411

图1

汽油/丁醇混合物在当量比为1、温度为750、950、1050 K下的着火延迟敏感性分析"

图2

着火延迟的模拟值与实验值的对比"

图3

详细机理与简化机理预测的着火延迟"

图4

详细机理与简化机理预测的组分浓度"

图5

简化机理和详细机理预测的层流火焰速度"

图6

缸内压力和放热率的实验值与模拟值"

1 郭亮, 杨文昭, 王云开, 等. 废气再循环对丁醇/柴油混合燃料发动机的影响[J]. 吉林大学学报: 工学版, 2017, 47(6): 1767-1774.
Guo Liang, Yang Wen-zhao, Wang Yun-kai, et al. Effect of exhaust gas recirculation on internal combustion engine fueled with butanol/diesel blend[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6): 1767-1774.
2 王乔, 孙万臣, 郭亮, 等. 丁醇/柴油混合燃料对压燃式发动机燃烧及微粒排放特征的影响[J]. 吉林大学学报: 工学版, 2019, 49(6): 1920-1928.
Wang Qiao, Sun Wan-chen, Guo Liang, et al. Effects of butanol/diesel blends on combustion and particulate emission characteristics of compression[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1920-1928.
3 Kohse-Höinghaus K, Oßwald P, Cool T A, et al. Biofuel combustion chemistry: from ethanol to biodiesel[J]. Angewandte Chemie International Edition, 2010, 49(21): 3572-3597.
4 Stranic I, Chase D P, Harmon J T, et al. Shock tube measurements of ignition delay times for the butanol isomers[J]. Combustion & Flame, 2012, 159(2): 516-527.
5 Weber B W, Sung C J. Comparative autoignition trends in butanol isomers at elevated pressure[J]. Energy & Fuels, 2013, 27(3): 1688-1698.
6 Dagaut P, Sarathy S M, Thomson M J. A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor[J]. Proceedings of the Combustion Institute, 2009, 32(1): 229-237.
7 Sarathy S M, Vranckx S, Yasunaga K, et al. A comprehensive chemical kinetic combustion model for the four butanol isomers[J]. Combustion and Flame, 2012, 159(6): 2028-2055.
8 Yusoff M N A M, Zulkifli N W M, Masjuki H H, et al. Performance and emission characteristics of a spark ignition engine fuelled with butanol isomer-gasoline blends[J]. Transportation Research Part D Transport and Environment, 2017, 57: 23-38.
9 Han D, Fan Y, Sun Z, et al. Combustion and emissions of isomeric butanol/gasoline surrogates blends on an optical GDI engine[J]. Fuel, 2020, 272: 117690.
10 Alramadan A S, Badra J, Javed T, et al. Mixed butanols addition to gasoline surrogates: shock tube ignition delay time measurements and chemical kinetic modeling[J]. Combustion and Flame, 2015, 162:3971-3979.
11 Fan Y, Duan Y, Liu W, et al. Effects of butanol blending on spray auto-ignition of gasoline surrogate fuels[J]. Fuel, 2020, 260: 116368.
12 Fan Y, Duan Y, Han D, et al. Influences of isomeric butanol addition on anti-knock tendency of primary reference fuel and toluene primary reference fuel gasoline surrogates[J]. International Journal of Engine Research, 2021, 22(1): 39-49.
13 刘凯敏. 高速汽油机燃用丁醇汽油的性能及化学反应机理研究[D]. 长沙: 湖南大学机械与运载工程学院, 2018.
Liu Kai-min. Research on engine performance and chemical mechanism model of butanol-gasoline blends in high speed gasoline engine[D]. Changsha: College of Mechanical and vehicle Engineering, Hunan University, 2018.
14 王建军. 丁醇和汽油及丁醇汽油混合燃料在缸内直喷发动机中燃烧过程及排放特性的研究[D]. 合肥:合肥工业大学汽车与交通工程学院, 2014.
Wang Jian-jun. Experimental study on combustion process and emission characteristics in direct injection engine of butanol, gasoline and butanol-gasoline blends[D]. Hefei: College of Automobile and Transportation Engineering, Hefei University of Technology, 2014.
15 Lu T, Law C K. A directed relation graph method for mechanism reduction[J]. Proceedings of the Combustion Institute, 2005, 30: 1333-1341.
16 Ra Y, Reitz R D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels[J]. Combustion and Flame, 2008, 155(4): 713-738.
17 Ra Y, Reitz R D. A combustion model for IC engine combustion simulations with multi-component fuels[J]. Combustion and Flame, 2011, 158(1): 69-90.
18 Mehl M, Pitz W J, Westbrook C K, et al. Autoignition behavior of unsaturated hydrocarbons in the low and high temperature regions[J]. Proceedings of the Combustion Institute, 2011, 33(1): 201-208.
19 Sarathy S M, OWald P, Hansen N, et al. Alcohol combustion chemistry[J]. Progress in Energy & Combustion Ence, 2014, 44: 40-102.
20 Reaction Design Inc. CHEMKIN-PRO, Release 15131[CP]. San Diego, CA: Reaction Design Inc, 2013.
21 Sun Z, Ma Z, Li X, et al. Study of flash boiling spray combustion in a spark ignition direct injection optical engine using digital image processing diagnostics[J]. Fuel, 2021, 284: 119078.
22 Han Z, Reitz R D. Turbulence modeling of internal combustion engines using RNG k-ɛ models[J]. Combustion Science and Technology, 1995, 106(4-6): 267-295.
23 Han Z, Reitz R D. A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling[J]. International Journal of Heat & Mass Transfer, 1997, 40(3): 613-625.
24 Senecal P K, Pomraning E, Richards K J, et al. Multi-dimensional modeling of direct-injection diese liquid length and flame lift-off length using cfd parallel detailed chemistry[J]. SAE Transactions, 2003, 112: 1331-1351.
25 Beale J C, Reitz R D. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model[J]. Atomization and Sprays, 1999, 9(6):623-650.
[1] 赵同宾,吴宜胜,段耀宗,黄震,韩东. RP-3航空煤油的润滑特性和改善措施[J]. 吉林大学学报(工学版), 2022, 52(3): 533-540.
[2] 陈涛,秦静,赵华,苏庆鹏,吕永,钟凯,王膺博,裴毅强. 基于模型群预测法对汽油机稳态原排的预测[J]. 吉林大学学报(工学版), 2021, 51(5): 1565-1574.
[3] 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62.
[4] 叶辉,刘畅,闫康康. 纤维增强复合材料在汽车覆盖件中的应用[J]. 吉林大学学报(工学版), 2020, 50(2): 417-425.
[5] 王乔,孙万臣,郭亮,程鹏,范鲁艳,李国良. 丁醇/柴油混合燃料对压燃式发动机燃烧及微粒排放特征的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1920-1928.
[6] 王德军,吕志超,王启明,张建瑞,丁建楠. 基于EKF及调制傅式级数的缸压辨识[J]. 吉林大学学报(工学版), 2019, 49(4): 1174-1185.
[7] 臧鹏飞,王哲,高洋,孙晨乐. 直线电机/发动机系统稳态运行综合控制策略[J]. 吉林大学学报(工学版), 2019, 49(3): 798-804.
[8] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[9] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[10] 江涛, 林学东, 李德刚, 顾静静. 压缩天然气缸内直喷发动机喷射方式对混合气形成及燃烧特性影响的模拟[J]. 吉林大学学报(工学版), 2018, 48(3): 735-743.
[11] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[12] 温博轩, 王伟达, 项昌乐, 杨磊, 凌川. 机电复合传动系统发动机模型集辨识[J]. 吉林大学学报(工学版), 2017, 47(5): 1358-1366.
[13] 王德军, 吕志超, 王启明, 张贤达, 王子健. 基于汽缸压力辨识的发动机失火故障诊断[J]. 吉林大学学报(工学版), 2017, 47(3): 917-923.
[14] 邓丽飞, 石要武, 朱兰香, 于丁力. SI发动机闭环系统故障检测[J]. 吉林大学学报(工学版), 2017, 47(2): 577-582.
[15] 范成岩, 许树新, 王洪军, 孟繁忠. 三轴正时链系统的磨损及其限定条件[J]. 吉林大学学报(工学版), 2017, 47(1): 122-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!