吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (8): 2410-2420.doi: 10.13229/j.cnki.jdxbgxb.20211121

• 农业工程·仿生工程 • 上一篇    

果树株间避障除草机设计与试验

王永烁1(),康建明1(),彭强吉1,陈英凯2,方会敏1,牛萌萌1,王少伟1   

  1. 1.山东省农业机械科学研究院,济南 250110
    2.山东省农业科学院,济南 250110
  • 收稿日期:2021-10-28 出版日期:2023-08-01 发布日期:2023-08-21
  • 通讯作者: 康建明 E-mail:1005736785@qq.com;kjm531@sina.com
  • 作者简介:王永烁(1993-),男,工程师,博士.研究方向:农业机械装备.E-mail:1005736785@qq.com
  • 基金资助:
    山东省重大科技创新工程项目(2019JZZY020621)

Design and experiment of obstacle avoidance weeding machine for fruit trees

Yong-shuo WANG1(),Jian-ming KANG1(),Qiang-ji PENG1,Ying-kai CHEN2,Hui-min FANG1,Meng-meng NIU1,Shao-wei WANG1   

  1. 1.Shandong Academy of Agricultural Machinery Science,Jinan 250110,China
    2.Shandong Academy of Agricultural Sciences,Jinan 250110,China
  • Received:2021-10-28 Online:2023-08-01 Published:2023-08-21
  • Contact: Jian-ming KANG E-mail:1005736785@qq.com;kjm531@sina.com

摘要:

针对果树株间除草作业复杂、杂草除净率低的问题,基于机构往复式伸缩运动思想,设计了一种用于清理果树株间杂草的自动避障除草机。通过对除草机各部件进行理论分析,确定了工作幅宽调节机构、信号采集机构、自动避障机构和除草刀等关键部件的结构及参数。利用弧形触杆和液压系统的协同作用,构建了自动避障控制系统,可根据触杆的不同位置状态,动态控制除草刀避开果树植株。在ADAMS中建立了虚拟样机模型,并进行了单因素仿真试验,确定了影响株间避障除草的关键因素。以避障液压缸速度、机器前进速度和复位弹簧弹性系数作为主要影响因素,杂草除净比为评价指标,利用Box-Benhnken试验设计原理,采用三因素三水平响应面分析方法,设计了二次回归组合试验,建立了杂草除净比的回归模型,得到最优参数分别为:避障液压缸速度126 mm/s,机器前进速度1.57 km/h,弹性系数21。以最优参数进行了田间验证试验,结果表明,所设计的除草机平均杂草除净比为92.65%,达到了果园除草农艺要求。研究结果为果园及其他作物株间除草机的进一步优化提供了参考。

关键词: 农业工程, 除草机, 株间杂草, 自动避障, ADAMS

Abstract:

Aiming at the problems of complicated weeding operation among fruit trees and low weed removal rate, based on the idea of reciprocating telescopic motion of mechanism, an automatic obstacle avoidance weeding machine for clearing weeds among fruit trees was designed. The structure and parameters of key components such as working width adjustment mechanism, signal acquisition mechanism, automatic obstacle avoidance mechanism and weeding knife are determined by theoretical analysis of each component of the weeding machine. Using the synergy of the arc-shaped contact rod and the hydraulic system, an automatic obstacle avoidance control system is constructed, which can dynamically control the weeding knife to avoid fruit trees according to the different positions of the contact rod. A virtual prototype model was established in ADAMS, and a single factor simulation experiment was carried out to determine the key factors affecting the weeding and obstacle avoidance between plants. Taking the speed of the obstacle avoidance hydraulic cylinder, the forward speed of the machine and the elastic coefficient of the return spring as the main influencing factors, and the weed removal ratio as the evaluation index, according to the Box-Benhnken experimental design principle, using the three-factor and three-level response surface analysis method, a two The regression model of the weed removal ratio was established through the second regression combination test, and the optimal parameters were obtained as follows: the speed of the obstacle avoidance hydraulic cylinder is 126 mm/s, the forward speed of the machine is 1.57 km/h, and the elastic coefficient is 21. The field verification test was carried out, and the results showed that the average weed removal rate of the designed weeding machine was 92.65%, which met the agronomic requirements of orchard weeding. The research results provide a reference for the further optimization of the interplant weeder in orchards and other crops.

Key words: agricultural engineering, weeding machine, weeds between plants, automatic obstacle avoidance, ADAMS

中图分类号: 

  • S224.1

图1

除草机简图"

图2

除草机工作过程示意图"

图3

信号采集机构示意图"

图4

除草结构示意图"

图5

除草机构运动学分析"

图6

避障液压系统"

图7

除草刀组合示意图"

图8

单因素试验除净比变化图线"

图9

田间试验现场及样机"

表1

因素水平编码"

编码

前进速度

X1/(km·h-1

液压缸伸缩速度

X2/(mm·s-1

弹性系数

X3

-11.412020
01.515030
11.618040

表2

试验安排及试验结果"

序号X1X2X3除草比/%
1-1.000-1.0000.00088.23
21.000-1.0000.00091.54
3-1.0001.0000.00087.58
41.0001.0000.00089.45
5-1.0000.000-1.00087.93
61.0000.000-1.00091.45
7-1.0000.0001.00089.34
81.0000.0001.00091.35
90.000-1.000-1.00091.95
100.0001.000-1.00087.58
110.000-1.0001.00090.44
120.0001.0001.00090.64
130.0000.0000.00089.10
140.0000.0000.00088.89
150.0000.0000.00089.45
160.0000.0000.00089.52
170.0000.0000.00089.64

表3

回归方程方差分析"

方差来源平方和自由度均方F显著性水平
模型Model30.5693.4036.04<0.0001
X114.34114.34152.15<0.0001
X25.9915.9963.56<0.0001
X31.0211.0210.880.0132
X1X20.5210.525.550.0506
X1X30.5710.576.030.0438
X2X35.2215.2255.440.0001
X120.06910.0690.730.4200
X220.000410.00040.0040.9486
X322.8612.8630.320.0009
残差Residual0.6670.094
失拟Lack of Fit0.2730.0910.940.4990
误差Pure Error0.3940.097
总和Cor Total31.2216

图10

交互因子对除净率的影响"

1 于威,韩晓梅. 现代化果园机械除草装备与技术应用现状及发展趋向[J].现代农村科技, 2017(6): 97.
Yu Wei, Han Xiao-mei. The application status and development trend of modern orchard mechanical weeding equipment and technology[J]. Modern Rural Science and Technology, 2017(6): 97.
2 王奇,周文琪,唐汉,等. 弧齿往复式稻田株间自动避苗除草装置设计与试验[J].农业机械学报,2021, 52(6): 53-61, 72.
Wang Qi, Zhou Wen-qi, Tang Han, et al. Design and experiment of arc-tooth reciprocating motion type seedling avoided weeding control device for intertillage paddy[J]. Transactions of the Chinese Society for Agricaltulal Machinery, 2021, 56(6): 53-61, 72.
3 Terpstra R, Kouwenhoven J K. Inter-row and intra-row weed-control with a hoe-ridger[J]. Journal of Agricultural Engineering Research, 1981, 26(2): 127-134.
4 Melander B. Intelligent versus non-intelligent mechanical intra-row weed control in transplanted onion and cabbage[J]. Crop Protection,2015, 72: 1-8.
5 Norremark M. The development and assessment of the accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops[J]. Biosystems Engineering, 2008, 101(4): 396-410.
6 Norremark M. Evaluation of an autonomous GPS-based systemfor intra-row weed control by assessing the tilled area[J]. Precision Agriculture, 2012, 13(2): 149-162.
7 Cordill C, Grift T E. Design and testing of an intra-row mechanical weeding machine for corn[J]. Biosystems Engineering, 2011, 110(3): 247-252.
8 陈振歆,王金武,牛春亮,等. 弹齿式苗间除草装置关键部件设计与试验[J]. 农业机械学报,2010,41(6): 81-86.
Chen Zhen-xin, Wang Jin-wu, Niu Chun-liang, et al. Design and experiment of key components of trash cultivator's working in paddy rice seeding lines[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6): 81-86.
9 杨松梅,王金武,刘永军,等. 水田株间立式除草装置的设计[J]. 农机化研究,2014, 36(12): 154-157.
Yang Song-mei, Wang Jin-wu, Liu Yong-jun, et al. Design and simulation analysis of vertical weed control device between seedlings in paddy field[J]. Journal of Agricultural Mechanization Research, 2014, 36(12): 154-157.
10 韩豹,申建英,李悦梅. 3ZCF-7700 型多功能中耕除草机设计与试验[J]. 农业工程学报,2011, 27(1): 124-129.
Han Bao, Shen Jian-ying, Li Yue-mei. Design and experiment of 3ZCF-7700 multi-functional weeding-cultivating machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 124-129.
11 张朋举,张纹,陈树人,等. 八爪式株间机械除草装置虚拟设计与运动仿真[J]. 农业机械学报,2010,41(4): 56-59.
Zhang Peng-ju, Zhang Wen, Chen Shu-ren, et al. Virtual design and kinetic simulation for eight claw intra-row mechanical weeding device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(4): 56-59.
12 陈树人,张朋举,尹东富,等. 基于LabVIEW的八爪式机械株间除草装置控制系统[J]. 农工程学报,2010, 26(): 234-237.
Chen Shu-ren, Zhang Peng-ju, Yin Dong-fu, et al. Control system of eight claw intra-row mechanical weeding device based on LabVIEW[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(Sup.2): 234-237.
13 胡炼,罗锡文,张智刚,等. 株间除草装置横向偏移量识别与作物行跟踪控制[J]. 农业工程学报,2013,29(14): 8-14.
Hu Lian, Luo Xi-wen, Zhang Zhi-gang, et al. Side-shift offset identification and control of crop row tracking for intra-row mechanical weeding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 8-14.
14 陈子文,李南,孙哲,等. 行星刷式株间锄草机械手优化与试验[J]. 农业机械学报,2015, 46(9): 94-99.
Chen Zi-wen, Li Nan, Sun Zhe, et al. Optimization and experiment of intra-row brush weeding manipulator based on planetary gear train[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 94-99.
15 余涛,蔡晓华,赵德春,等. 智能苗间锄草平台设计[J].农机化研究,2013, 35(11): 30-34.
Yu Tao, Cai Xiao-hua, Zhao De-chun, et al. Design of intelligent weeding platform between seedlings[J]. Journal of Agricultural Mechanization Research, 2013, 35(11): 30-34.
16 丛茜,徐金,马博帅,等.基于虚拟仿真的拖拉机后悬挂检测装置设计与实验[J].吉林大学学报:工学版,2021, 51(2): 754-760.
Cong Qian, Xu Jin, Ma Bo-shuai, et al. Design and test of tractor hydraulic suspension system testing device based on virtual simulation[J]. Journal of Jilin University (Engineering and Technology Edition),2021, 51(2): 754-760.
17 王新彦,江泉,吕峰,等.基于参数化模型的零转弯半径割草机侧翻稳定性[J].吉林大学学报:工学版,2021, 51(5): 1908-1918.
Wang Xin-yan, Jiang Quan, Lv Feng, et al. Rollover stability of zero turning radius lawn mower based on parametric model[J]. Journal of Jilin University (Engineering and Technology Edition),2021, 51(5): 1908-1918.
18 于畅畅,徐丽明,王庆杰,等. 篱架式栽培葡萄双边作业株间自动避障除草机设计与试验[J].农业工程学报,2019, 35(5): 1-9.
Yu Chang-chang, Xu Li-ming, Wang Qing-jie, et al. Design and experiment of bilateral operation intra-row auto obstacle avoidance weeder for trellis cultivated grape[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 1-9.
19 张圣,骆艳洁. 液压系统节能设计[J]. 机床与液压,2007(1): 151-152, 108.
Zhang Sheng, Luo Yan-jie. Energy-saving design of hydraulic system[J]. Machine Tool and Hydraulics, 2007(1): 151-152, 108.
20 长广仁藏.旋耕拖拉机基本设计理论[M].北京:机械工业出版社,1978.
21 胡友民,杜润生,杨叔子. 液压系统运行状态监测[J]. 液压与气动, 2002(8): 35-37.
Hu You-min, Du Run-sheng, Yang Shu-zi. Operation status monitoring of hydraulic system[J]. Hydraulics and Pneumatics, 2002(8): 35-37.
22 郭卫东,李守忠,马璐. ADAMS2013应用实例精解教程[M]. 北京:机械工业出版社,2010.
23 李增刚. ADAMS 入门详解与实例[M]. 北京:国防工业出版社,2006.
24 康建明,彭强吉,王士国,等. 弹齿式残膜回收机捡拾装置改进设计与试验[J].农业机械学报,2018,49(): 295-303.
Kang Jian-ming, Peng Qiang-ji, Wang Shi-guo, et al. Design and experiment on pickup unit of spring-tooth residual plastic film collector[J].Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(Sup.1): 295-303.
25 彭强吉,李成松,康建明,等. 气力式圆筒筛膜杂分离机改进设计与试验[J].农业机械学报,2020, 51(8):126-135.
Peng Qiang-ji, Li Cheng-song, Kang Jian-ming, et al. Improved design and test on pneumatic cylinder sieve film hybrid separator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 126-135.
[1] 吕锋,李念,冯壮壮,张杨航. 面向用户的个性化产品服务系统协同过滤推介方法[J]. 吉林大学学报(工学版), 2023, 53(7): 1935-1942.
[2] 王斌,何丙辉,林娜,王伟,李天阳. 基于随机森林特征选择的茶园遥感提取[J]. 吉林大学学报(工学版), 2022, 52(7): 1719-1732.
[3] 耿端阳,孙延成,牟孝栋,张国栋,姜慧新,朱俊科. 基于差速辊的青贮玉米籽粒破碎仿真试验及优化[J]. 吉林大学学报(工学版), 2022, 52(3): 693-702.
[4] 温昌凯,谢斌,宋正河,韩建刚,杨倩雯. 拖拉机耐久性加速结构试验设计方法[J]. 吉林大学学报(工学版), 2022, 52(3): 703-715.
[5] 王国伟,朱庆辉,于海业,黄东岩. 基于数字化农机装备的青贮饲料可追溯系统[J]. 吉林大学学报(工学版), 2022, 52(1): 242-252.
[6] 耿端阳,牟孝栋,张国栋,王宗源,朱俊科,徐海刚. 小麦联合收获机清选机理分析与优化试验[J]. 吉林大学学报(工学版), 2022, 52(1): 219-230.
[7] 梁方,王德成,尤泳,王光辉,王宇兵,张晓明,冯金奎. 草地切根施肥补播复式改良机设计与试验[J]. 吉林大学学报(工学版), 2022, 52(1): 231-241.
[8] 王新彦,江泉,吕峰,易政洋. 基于参数化模型的零转弯半径割草机侧翻稳定性[J]. 吉林大学学报(工学版), 2021, 51(5): 1908-1918.
[9] 钱震杰,金诚谦,袁文胜,倪有亮,张光跃. 柔性脱粒齿杆与谷物含摩擦打击动力学模型[J]. 吉林大学学报(工学版), 2021, 51(3): 1121-1130.
[10] 程超,付君,陈志,任露泉. 玉米籽粒收获机清选筛堵塞规律及脱附试验[J]. 吉林大学学报(工学版), 2021, 51(2): 761-771.
[11] 丛茜,徐金,马博帅,张晓超,陈廷坤. 基于虚拟仿真的拖拉机后悬挂检测装置设计与实验[J]. 吉林大学学报(工学版), 2021, 51(2): 754-760.
[12] 陈学深,黄柱健,马旭,齐龙,方贵进. 水稻机械除草避苗控制系统设计与试验[J]. 吉林大学学报(工学版), 2021, 51(1): 386-396.
[13] 耿端阳,谭德蕾,于兴瑞,苏国粱,王骞,鹿秀凤,金诚谦. 玉米柔性脱粒滚筒脱粒元件设计与试验[J]. 吉林大学学报(工学版), 2020, 50(5): 1923-1933.
[14] 高锐涛,单建,杨洲,文晟,兰玉彬,张泉勇,汪洋. 植保无人机变量喷雾处方图实时解译系统的设计与试验[J]. 吉林大学学报(工学版), 2020, 50(1): 361-374.
[15] 刘恩泽,吴文福. 基于综合指标品质评价算法的单色水果生长状态检测互联网架构[J]. 吉林大学学报(工学版), 2019, 49(6): 2019-2026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!