吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (3): 888-898.doi: 10.13229/j.cnki.jdxbgxb.20230552

• 材料科学与工程 • 上一篇    下一篇

环保型蓄盐沥青混合料性能损伤演变

俞靖洋1,2(),李东钊3,张志清1(),王真4,孙海林5,布海玲4,李明春5   

  1. 1.北京工业大学 交通工程北京市重点实验室,北京 100124
    2.北京市市政工程设计研究总院有限公司,北京 100082
    3.交通运输部 公路科学研究所,北京 100088
    4.北京市政路桥建材集团有限公司,北京 100176
    5.中交隧道工程局有限公司,北京 100102
  • 收稿日期:2023-08-04 出版日期:2025-03-01 发布日期:2025-05-20
  • 通讯作者: 张志清 E-mail:yujingyang@emails.bjut.edu.cn;zhangzhiqing@bjut.edu.cn
  • 作者简介:俞靖洋(1994-),男,工程师,博士研究生.研究方向:路面结构与材料.E-mail:yujingyang@emails.bjut.edu.cn
  • 基金资助:
    国家重点研发计划冬奥专项项目(2018YFF0300305-03);国家自然科学基金项目(52178403)

Evolution of damage to performance of environment⁃friendly salt storage asphalt mixture

Jing-yang YU1,2(),Dong-zhao LI3,Zhi-qing ZHANG1(),Zhen WANG4,Hai-lin SUN5,Hai-ling BU4,Ming-chun LI5   

  1. 1.Beijing Key Laboratory of Traffic Engineering,Beijing University of Technology,Beijing 100124,China
    2.Beijing General Municipal Engineering Design & Research Institute Co. ,Ltd. ,Road Traffic Institute,Beijing 100082
    3.Research Institute of Highway Ministry of Transport,Beijing,100088 China
    4.Beijing Municipal Road & Bridge Building Material Group Co. ,Ltd. ,Beijing 100176,China
    5.CCCC Tunnel Engineering Co. ,Ltd. ,Beijing 100102,China
  • Received:2023-08-04 Online:2025-03-01 Published:2025-05-20
  • Contact: Zhi-qing ZHANG E-mail:yujingyang@emails.bjut.edu.cn;zhangzhiqing@bjut.edu.cn

摘要:

为准确预估环保型蓄盐沥青路面服役过程中降水、凝冰对沥青混合料路用性能的影响,以浸泡-冻融循环试验为基础,研究了沥青混合料的长期路用性能变化规律。结合寿命可靠度理论和损伤原理,考虑水分与冻融耦合作用对蓄盐沥青混合料的影响,建立了在浸泡-冻融条件下的沥青混合料损伤演变模型,对普通沥青混合料和环保型蓄盐沥青混合料路用性能损伤演变状况进行对比分析。试验结果表明:随着浸泡-冻融循环次数的增加,蓄盐沥青混合料的空隙率明显升高,劈裂强度和动稳定度性能指标均有明显下降,且蓄盐沥青混合料的变化幅度始终大于普通沥青混合料。模型计算分析发现,环保型蓄盐沥青混合料在浸泡-冻融循环过程中,随着融雪盐分的析出,受到的损伤是由外及里发展形成的,冻融循环对沥青混合料的劈裂抗拉强度影响更加显著,在一定程度上会影响路面的使用性能。

关键词: 道路工程, 环保型蓄盐沥青混合料, 浸泡-冻融循环, 路用性能, 损伤模型

Abstract:

In order to accurately predict the effect of precipitation and ice condensation on the engineering performance of asphalt mixtures during the service of environmentally friendly salt storage asphalt pavements, the long-term road performance changes of asphalt mixture were studied based on immersion freeze-thaw cycle tests. Based on the theory of life reliability and damage principle, considering the influence of moisture and freeze-thaw cycle on salt storage asphalt mixture, the damage evolution model of asphalt mixture under immersion-freeze-thaw condition was established, and the evolution of engineering performance damage of ordinary asphalt mixture and environmentlly-friendly salt storage asphalt mixture was compared. The experimental results show that with the increase of the number of immersion-freeze-thaw cycles, the porosity of the salt storage asphalt mixture increases obviously, while the performance indexes of splitting strength and dynamic stability decrease obviously, and the variation range of the salt storage asphalt mixture is always greater than that of the ordinary asphalt mixture. According to the model calculation and analysis, under the damage of immersion-freeze-thaw, with the precipitation of snow melting salt, the destruction of environmently-friendly salt storage asphalt mixture is developed from the outside to the inside, and the immersion-freeze-thaw cycle has a more significant effect on the splitting tensile strength of the asphalt mixture, which will affect the pavement performance to a certain extent.

Key words: road engineering, environmentally friendly salt storage asphalt mixture, immersion-freeze-thaw cycle, engineering performance, damage model

中图分类号: 

  • U416

表1

SBS改性沥青物理性质"

试验指标实测值规范值试验方法
针入度(5 s,100 g,25 ℃)/mm6960~80T0604
软化点(R&B)/℃80.5≥75T0606
延度(5 ℃)/cm39≥30T0605
RTFO质量变化/%-0.168≤±1.0T0609
残留针入度比(25 ℃)/%84.1≥60T0604
RTFO残留延度(5 ℃)/cm27≥20T0605

图1

蓄盐填料RX的外观"

表2

沥青混合料各筛孔通过百分率"

组别RX替代量/%筛孔尺寸/mm下通过百分率/%
1613.29.54.752.361.180.60.30.150.075
1151009460.229.719.715.913.011.112.210.3
2301009460.229.719.715.913.011.312.59.7
3451009460.229.719.715.913.011.412.69.3
4601009460.229.719.715.913.011.012.88.3

表3

蓄盐沥青混合料马歇尔试验结果"

级配分组蓄盐填料/%相对毛体积密度空隙率/%矿料间隙率/%沥青饱和度/%稳定度/kN流值/mm
规范值3.5~4.5≥1775~85≥6
1152.5073.7817.2678.0113.634.6
2302.5043.9417.2277.1113.064.3
3452.5054.0517.1576.3812.644.0
4602.5084.2117.0975.3611.793.8

图2

沥青混合料级配曲线"

表4

混合料浸泡-冻融分组方案"

混合料种类组别浸泡时间/d冻融次数/次

蓄盐沥青

混合料试件

1122
2244
3366
4488
56010

普通沥青混

合料试件

6122
7244
8366
9488
106010

图3

空隙率随浸泡-冻融循环的变化"

图4

扫描电镜下蓄盐填料结构图"

图5

蓄盐填料盐分释放前后结构对比图"

图6

扫描电镜下蓄盐沥青混合料表面形态"

图7

劈裂强度随浸泡-冻融循环的变化"

图8

劈裂强度随浸泡-冻融循环的单位周期损失率"

表5

损伤演化模型参数拟合及预测结果"

混合料类型性能指标参数相关系数R2实测D10/%预测D10/%相对误差/%
ανλ0

普通沥青

混合料

劈裂强度0.6690.0380.0300.99128.329.23.2
动稳定度0.7340.0150.0190.97425.326.44.4

蓄盐沥青

混合料

劈裂强度0.7570.1410.1060.95649.551.84.6
动稳定度0.7550.0760.0600.98938.839.51.8

图9

动稳定度随浸泡-冻融循环的变化"

图10

动稳定度随浸泡-冻融循环的单位周期损失率"

图11

六面体受等损伤梯度G的模型"

1 刘状壮, 沙爱民, 蒋玮. 蓄盐沥青路面研究进展: 盐化物材料、 混合料及其性能与评价[J]. 中国公路学报, 2019, 32(4): 18-31, 72.
Liu Zhuang-zhuang, Sha Ai-min, Jia Wei. Advances in asphalt pavements containing salts: additives, mixtures, performances, and evaluation[J]. China Journal of Highway and Transport, 2019, 32(4): 18-31, 72.
2 张倩, 张旭景, 梁纪, 等. 有机融雪剂对沥青的影响及作用机理[J]. 建筑材料学报, 2021, 24(4): 820-827.
Zhang Qian, Zhang Xu-jing, Liang Ji, et al. Effect of organic snow melting agent on asphalt performance and its mechanism[J]. Journal of Building Materials, 2021, 24(4): 820-827.
3 张争奇, 王志祥, 李志宏, 等. 含盐高湿环境下沥青混合料耐久性[J]. 北京工业大学学报, 2015, 41(9): 1365-1374.
Zhang Zheng-qi, Wang Zhi-xiang, Li Zhi-hong, et al. Durability of asphalt pavement under salty and humid environment[J]. Journal of Beijing University of Technology, 2015, 41(9): 1365-1374.
4 Juli-Gándara L, Vega-Zamanillo Á, Calzada-Pérez M Á, et al. Sodium chloride effect in the mechanical properties of the bituminous mixtures[J]. Cold Regions Science and Technology,2019, 164: No. 102776.
5 Behnam A, Saleh S T. Simultaneous effects of salted water and water flow on asphalt concrete pavement deterioration under freeze-thaw cycles[J]. International Journal of Pavement Engineering, 2014, 15(5): 383-391.
6 龚演, 徐剑, 刘凯, 等. 掺盐化物融雪剂沥青混合料的性能评价[J]. 公路交通科技, 2022, 39(6): 17-24, 34.
Gong Yan, Xu Jian, Liu Kai, et al. Evaluation of performance of asphalt mixture containing salinization-based snow-melting agent[J]. Journal of Highway and Transportation Research and Development, 2022, 39(6): 17-24, 34.
7 李兆生, 谭忆秋. 沥青混合料冻融损伤特性研究[J]. 中国科技论文, 2014, 9(11): 1279-1281.
Li Zhao-sheng, Tan Yi-qiu. Research on asphalt mixture freezing-thawing damage performance[J]. China Sciencepaper, 2014, 9(11): 1279-1281.
8 王文盛. 冻融循环条件下玄武岩纤维增强沥青混合料的损伤特性及细观机理研究[D]. 长春: 吉林大学交通学院, 2020.
Wang Wen-sheng. Research on damage characteristics and mesoscopic mechanism of basalt fiber reinforced asphalt mixture under freeze-thaw cycle conditions[D]. Changchun: College of Transportation, Jilin University, 2020.
9 王军, 白艳君. 盐化物沥青混合料抗冻融循环性能及灰色预测[J]. 中外公路, 2012, 32(5): 249-252.
Wang Jun, Bai Yan-jun. Anti-freeze-thaw cycle performance and grey prediction of salted asphalt mixture[J]. Journal of China & Foreign Highway, 2012, 32(5): 249-252.
10 谢康, 扈慧敏, 周辉. 自融雪沥青混合料配合比设计及路用性能研究[J]. 工程与建设, 2018, 32(1): 94-98.
Xie Kang, Hu Hui-min, Zhou Hui. Study on the design and performance of the mixture ratio design and road[J]. Engineering and Construction, 2018, 32(1): 94-98.
11 张争奇, 唐周鸣, 李杨, 等. 自融雪剂对沥青混合料性能影响研究[J].重庆交通大学学报:自然科学版, 2020, 39(7): 92-99.
Zhang Zheng-qi, Tang Zhou-ming, Li Yang, et al. Effect of self-melting snow agent on performance of asphalt mixture[J]. Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(7): 92-99.
12 吴欣桐, 张志清, 朱江, 等. 盐化物材料中蓄盐载体的选择及最优配合比[J]. 建筑材料学报, 2022, 25(3): 278-284, 293.
Wu Xin-tong, Zhang Zhi-qing, Zhu Jiang, et al. Selection and optimal mix ratio of carrier in anti-freeze materials[J]. Journal of Building Materials, 2022, 25(3): 278-284, 293.
13 张争奇, 罗要飞, 赵富强. 储盐类融雪抑冰材料对沥青混合料性能影响研究进展[J]. 化工进展, 2018, 37(6): 2282-2294.
Zhang Zheng-qi, Luo Yao-fei, Zhao Fu-qiang. Review of research on the effect of salt storage deicing materials on the performance of asphalt mixture[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2282-2294.
14 吴平, 王选仓. 抗冻型微表处沥青混合料的路用性能及抗冻性能[J]. 北京工业大学学报, 2017, 43(1): 143-149.
Wu Ping, Wang Xuan-cang. Road performance and antifreeze property of natifreeze micro-surfacing asphalt mixture[J]. Journal of Beijing University of Technology, 2017, 43(1): 143-149.
15 张秀, 张丽, 李书芳, 等. 排水性沥青混合料宏观性能与微细观空隙结构研究[J]. 新型建筑材料, 2020, 47(9): 94-98, 142.
Zhang Xiu, Zhang Li, Li Shu-fang, et al. Study on macroscopic properties and microscopic viscosity structure of drainage asphalt mixtures[J]. New Building Materials, 2020, 47(9): 94-98, 142.
16 崔亚楠, 韩吉伟, 冯蕾, 等. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报: 工学版, 2017, 47(2): 452-458.
Cui Ya-nan, Han Ji-wei, Feng Lei, et al. Microstructure of asphalt under salt freezing cycles[J]. Journal of Jinlin University (Engineering and Technology Edition), 2017, 47(2): 452-458.
17 谭忆秋, 赵立东, 蓝碧武, 等. 反复凝冰作用下沥青混合料性能研究[J]. 建筑材料学报, 2011, 14(6): 761-766, 792.
Tan Yi-qiu, Zhao Li-dong, Lan Bi-wu, et al. Research on the performance of asphalt mixture under repeated freezing[J]. Journal of Building Materials, 2011, 14(6): 761-766, 792.
18 陈征. 老化及冻融条件下复合胶粉改性沥青混合料高温性能研究[D]. 呼和浩特: 内蒙古工业大学土木工程学院, 2021.
Chen Zheng. Research on high temperature performance of composite rubber powder modified asphalt mixture under aging and freezing-thawing conditions[D]. Hohhot: College of Civil Engineering, Inner Monglia University of Technology, 2021.
19 郭诗言. 水对沥青混合料永久变形性能的影响研究[D].重庆: 重庆交通大学土木工程学院, 2017.
Guo Shi-yan. Study on the effect of water on permanent deformation of asphalt mixture[D]. Chongqing: College of Civil Engineering, Chongqing Jiaotong University, 2017.
20 关宇刚, 孙伟, 缪昌文. 基于可靠度与损伤理论的混凝土寿命预测模型Ⅰ: 模型阐述与建立[J]. 硅酸盐学报, 2001, 29(6): 530-534.
Guan Yu-gang, Sun Wei, Miao Chang-wen. One service-life prediction model for the concrete based on the reliability and damage theories Ⅰ: narration and establishment of the model[J]. Journal of the Chinese Ceramic Society, 2001, 29 (6):530-534.
21 谭忆秋, 赵立东, 蓝碧武, 等. 沥青混合料冻融损伤模型及寿命预估研究[J]. 公路交通科技, 2011, 28(6): 1-7, 31.
Tan Yi-qiu, Zhao Li-dong, Lan Bi-wu, et al. Research on freeze-thaw damage model and life prediction of asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2011, 28(6): 1-7, 31.
22 程永春, 余地, 谭国金, 等. 玄武岩纤维沥青混合料的冻融损伤演化规律[J]. 哈尔滨工程大学学报, 2019, 40(3) :518-524.
Cheng Yong-chun, Yu Di, Tan Guo-jin, et al. Evolution on freeze-thaw damage of basalt fiber asphalt mixture[J]. Journal of Harbin Engineering University,2019, 40(3): 518-524.
[1] 徐俊鹏,郑传峰,杜艳韬,王雨航,路政,范文军. 寒区沥青混合料在水-热-力三场耦合作用下的损伤效应[J]. 吉林大学学报(工学版), 2025, 55(3): 877-887.
[2] 杨彦海,李百川,杨野,王崇骅,岳靓. 基于虚拟劈裂试验的集料椭球表面基构造[J]. 吉林大学学报(工学版), 2025, 55(2): 653-663.
[3] 念腾飞,韩召,魏智强,王国伟,戈锦果,李萍. 考虑骨料形态的沥青混合料细观数值建模方法[J]. 吉林大学学报(工学版), 2025, 55(2): 639-652.
[4] 韦万峰,孔令云,禤炜安,杨帆,郭鹏. 沥青发泡特性及温拌混合料水分敏感性综述[J]. 吉林大学学报(工学版), 2025, 55(1): 20-35.
[5] 郭风春,毕海鹏,王海涛,吴树正,杨泓雨. 基于时温等效的纳米碳粉改性沥青黏弹行为[J]. 吉林大学学报(工学版), 2025, 55(1): 221-229.
[6] 崔亚宁,司春棣,凡涛涛,王飞. 水-荷耦合作用下沥青桥面铺装层裂缝扩展分析[J]. 吉林大学学报(工学版), 2024, 54(7): 1988-1996.
[7] 高英力,谷小磊,廖美捷,胡新浪,谢雨彤. SiO2气凝胶/反应性弹性体三元共聚物/多聚磷酸复合改性沥青流变性能与改性机理[J]. 吉林大学学报(工学版), 2024, 54(7): 1978-1987.
[8] 徐永丽,杨煦兰,周吉森,杨松翰,孙明刚. 温拌沥青的沥青烟成分及温拌剂抑烟性能[J]. 吉林大学学报(工学版), 2024, 54(6): 1701-1707.
[9] 李祖仲,李梦园,刘卫东,庞萧萧,唐豪,张学磊,马晨杨. 蔗渣纤维表面改性及其沥青混合料路用性能[J]. 吉林大学学报(工学版), 2024, 54(6): 1738-1745.
[10] 孙雅珍,薛博欣,孙岩,王志臣,潘嘉伟. 考虑非均匀性的沥青混合料开裂行为细观模拟[J]. 吉林大学学报(工学版), 2024, 54(6): 1708-1718.
[11] 赵晓康,胡哲,牛振兴,张久鹏,裴建中,温永. 基于非均质模型的水稳碎石材料细观开裂行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1258-1266.
[12] 万铜铜,汪海年,郑文华,冯珀楠,陈玉,张琛. 级配碎石层协调沥青混合料层温度收缩变形行为[J]. 吉林大学学报(工学版), 2024, 54(4): 1045-1057.
[13] 陈兵,张杨坤,王洋,刘晟哲,韩烬阳. 激光焊接接头剪切GTN模型损伤参数识别[J]. 吉林大学学报(工学版), 2024, 54(12): 3468-3477.
[14] 李松,石星星,司春棣,蒋继望,暴斌硕. 沥青胶浆高温流变性能及矿粉强化效应评价[J]. 吉林大学学报(工学版), 2024, 54(11): 3244-3254.
[15] 朱洪洲,苏春力,唐乃膨,魏俊尧,孙宏军. 胶粉改性沥青排放物采样及定量分析方法[J]. 吉林大学学报(工学版), 2024, 54(10): 2922-2929.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!