吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (10): 2922-2929.doi: 10.13229/j.cnki.jdxbgxb.20221576

• 交通运输工程·土木工程 • 上一篇    

胶粉改性沥青排放物采样及定量分析方法

朱洪洲1,2(),苏春力2,唐乃膨1,2(),魏俊尧2,孙宏军3   

  1. 1.重庆交通大学 交通土建工程材料国家地方联合工程研究中心,重庆 400074
    2.重庆交通大学 土木工程学院,重庆 400074
    3.河北交投资源开发利用有限公司,石家庄 050090
  • 收稿日期:2022-12-09 出版日期:2024-10-01 发布日期:2024-11-22
  • 通讯作者: 唐乃膨 E-mail:zhuhongzhouchina@cqjtu.edu.cn;tnp@cqjtu.edu.cn
  • 作者简介:朱洪洲(1976-),男,教授,博士. 研究方向:道路建筑材料. E-mail: zhuhongzhouchina@cqjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51808073);重庆市自然科学基金项目(cstc2021jcyj-msxmX0637);重庆市教育委员会科学技术研究计划青年项目(KJQN202100725);重庆交通大学研究生科创基金项目(2021S0018)

Sampling and quantitative analysis method of emissions from crumb rubber modified asphalt

Hong-zhou ZHU1,2(),Chun-li SU2,Nai-peng TANG1,2(),Jun-yao WEI2,Hong-jun SUN3   

  1. 1.National & Local Joint Engineering Research Center of Transportation and Civil Engineering Materials,Chongqing Jiaotong University,Chongqing 400074,China
    2.School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China
    3.Hebei Transportation Investment Resources Development and Utilization Co. Ltd. ,Shijiazhuang 050090,China
  • Received:2022-12-09 Online:2024-10-01 Published:2024-11-22
  • Contact: Nai-peng TANG E-mail:zhuhongzhouchina@cqjtu.edu.cn;tnp@cqjtu.edu.cn

摘要:

为定量分析胶粉改性沥青排放物,本文采用自研烟气采样方法与气相色谱质谱分析(GC-MS)内标法对胶粉改性沥青的排放进行量化分析。结果表明:烟气样品加标回收率良好,未出现吸附穿透,试验变异性较低,标准曲线线性相关性良好;胶粉掺入显著提高了苯系物与苯并噻唑、三甲基二氢喹啉等胶粉改性沥青特征排放物的排放量;胶粉改性沥青相较于基质沥青,正构烷烃排放有所下降,PAHs排放与基质沥青相当,其中萘为主要的PAHs排放。

关键词: 道路工程, 胶粉改性沥青, 特征排放, 气相色谱-质谱联用仪, 内标法

Abstract:

Crumb rubber modified asphalt(CRMA) has technical advantages in terms of cost saving, performance enhancement, etc. However, CRMA produces a large amount of harmful gases during pavement construction, and it is urgent to quantitatively analyze the emissions of CRMA. In this paper, a method for sampling CRMA emissions was developed, and gas chromatograph-mass spectrometer (GC-MS) with internal standard method was used to quantitatively analyze the chemical compositions of CRMA emissions. The main conclusions are as follows. The standard recovery rate is good, and there is no adsorption breakthrough during the process of emissions collection. The standard curves of different concentration range have good linear relationships. The addition of crumb rubber significantly increases the emission of benzene series, benzothiazole, trimethyl dihydroquinoline and other CRMA characteristic emissions. Compared with neat asphalt, the emission of n-alkanes from CRMA decreases. The emission of PAHs from CRMA is similar to that from neat asphalt. Naphthalene is the main component of the PAHs released from CRMA and neat asphalt.

Key words: road engineering, crumb rubber modified asphalt, characteristic emission, gas chromatograph-mass spectrometer (GC-MS), internal standard method

中图分类号: 

  • U414

表1

沥青基本性能表"

软化点/℃5 ℃延度/cm针入度/0.1 mm
基质沥青46.78.776.7
改性沥青70.211.733.4

表2

高、低浓度定量分析标准曲线浓度梯度 (mg/L)"

低浓度梯度高浓度梯度
苯系物0.01、0.05、0.1、0.2、0.5、1、20.5、1、2、5、10、25、50
PAHs与替代物0.01、0.05、0.1、0.2、0.5、1、20.2、0.5、1、2、5、10、25
正构烷烃0.01、0.05、0.1、0.2、0.5、1、20.5、1、2、5、10、25、50
胶粉特征排放物0.01、0.05、0.1、0.2、0.5、1、2、51、2、5、10、25、50、100

图 1

沥青烟气收集-解吸试验"

表3

各排放物标准曲线信息汇总"

待测物Rlow2Rhigh2检出限/(mg?m-3定量限/(mg?m-3保留时间/min
甲苯0.990 50.997 60.002 00.006 73.905

乙苯

对二甲苯

间二甲苯

0.998 8

0.993 5

0.003 7

0.012 2

5.764

苯乙烯0.998 70.997 50.005 10.016 96.376
邻二甲苯0.997 20.997 40.013 60.045 36.288
苯并噻唑0.999 60.994 50.006 30.021 115.626
二氢喹啉0.998 90.996 00.093 20.310 624.932
二环己基二硫化物0.999 20.999 20.344 81.149 434.962
对苯二胺0.994 80.997 60.157 90.526 340.070
2-氟联苯0.997 70.993 50.001 30.004 220.511
C80.998 90.998 90.020 30.067 64.342
C90.999 20.999 20.004 50.015 06.453
C100.999 20.999 20.001 80.006 19.153
C110.998 40.998 90.000 40.001 212.085
C120.998 50.999 00.000 40.001 214.967
C130.997 70.999 00.000 50.001 818.024
C140.995 60.999 10.001 10.003 522.664
C150.996 10.999 20.000 20.000 728.550
C160.995 70.998 60.001 00.003 330.677
C170.991 90.995 40.000 50.001 831.257
C180.996 90.997 40.000 90.002 933.055
C190.996 20.996 90.001 60.005 433.767
C200.996 20.996 90.001 10.003 534.207
C210.993 40.997 00.001 70.005 537.760
C220.995 60.997 80.002 30.007 738.692
C230.995 10.995 10.006 20.020 639.574
C240.997 50.997 50.007 40.024 740.417
C250.996 20.998 90.010 20.034 141.213
0.997 60.998 60.001 20.003 914.535
苊烯0.996 20.998 50.003 30.011 027.363
0.9970.998 70.003 90.012 927.747
0.995 50.998 80.001 90.006 330.677
0.997 20.998 90.000 70.002 431.257
0.995 50.998 90.001 80.005 934.455
荧蒽0.996 10.998 80.001 40.004 637.569
0.995 60.998 70.001 30.004 238.157
苯并[a]蒽0.993 10.995 10.002 20.007 341.123
0.993 40.997 10.002 20.007 341.248

苯并[k]荧蒽

苯并[b]荧蒽

0.995 80.992 80.034 70.115 843.608
苯并[a]芘0.993 30.9920.003 70.012 344.233

茚[1,2,3-cd]芘

二苯并[a,h]蒽

0.998 20.994 40.036 50.121 746.481
苯并[g,h,i]苝0.998 10.997 60.030 90.103 146.943

图2

XAD-2吸附管简图1-玻璃棉;2-大孔吸附树脂;A-100 mg大孔吸附树脂;B-50 mg大孔吸附树脂"

图3

A、B段总排放量比较"

表4

回收率与精密度测定结果"

替代物替代物掺量/μg回收率/%平均回收率/%RSD/%
样品1样品2样品3
2-氟联苯1095.4590.2099.6495.104.97
298.3396.0496.4596.941.26

图4

同种沥青室内烟气试验平行测定结果"

图5

胶粉改性沥青、基质沥青排放组成"

图6

基质沥青与胶粉改性沥青排放物比较"

1 马涛,陈葱琳,张阳,等. 胶粉应用于沥青改性技术的发展综述[J].中国公路学报,2021,34(10):1-16.
Ma Tao, Chen Cong-lin, Zhang Yang, et al. Development of using crumb rubber in asphalt modification: a review[J]. China Journal of Highway and Transport,2021, 34(10):1-16.
2 Picado-Santos L G, Capitão S D, Neves J M C. Crumb rubber asphalt mixtures: a literature review[J]. Construction and Building Materials,2020,247(3):No.118577.
3 张家伟,黄卫东,吕泉,等. TB胶粉复合SBS改性沥青及混合料的低温性能[J].建筑材料学报,2021,24(1):131-137, 152.
Zhang Jia-wei, Huang Wei-dong, Quan Lyu, et al. Low temperature performance of TB crumb rubber composite SBS modified asphalt and mixture[J]. Journal of Building Materials,2021,24(1):131-137, 152.
4 周璐,黄卫东,吕泉,等.不同改性剂对沥青黏结及抗水损害性能的影响[J].建筑材料学报,2021,24(2):377-384.
Zhou Lu, Huang Wei-dong, Quan Lyu, et al. Effects of various modifiers on the bond property and moisture damage resistance of asphalt[J]. Journal of Building Materials,2021,24(2):377-384.
5 Wagner S, Hüffer T, Klöckner P, et al. Tire wear particles in the aquatic environment—a review on generation, analysis, occurrence, fate and effects[J]. Water Research,2018,139:83-100.
6 Tang N P, Zhang Z Y, Dong R K, et al. Emission behavior of crumb rubber modified asphalt in the production process[J]. Journal of Cleaner Production,2022,340(3):1-8.
7 Nilsson P T, Ulf B, Håkan T, et al. Emissions into the air from bitumen and rubber bitumen-implications for asphalt workers' exposure[J]. Annals of Work Exposures and Health,2018,62(7):828-839.
8 崔培强. 沥青VOC分析技术及抑制方法研究[D].武汉:武汉理工大学土木工程与建筑学院,2015.
Cui Pei-qiang. Research Methodologies on the VOC emissions from bituminous materials and its inhibitor[D]. Wuhan: School of Civil Engineering and Architecture, Wuhan University of Technology,2015.
9 肖月,常郗文,董前坤,等.道路沥青材料VOCs的指纹组分及其定量分析[J].中国公路学报,2020,33(10):276-287.
Xiao Yue, Chang Xi-wen, Dong Qian-kun, et al. Fingerprint components and quantitative analysis of volatile organic compounds of asphalt materials[J]. China Journal of Highway and Transport,2020,33(10):276-287.
10 Yang X, You Z P, Perram D, et al. Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions[J]. Journal of Hazardous Materials,2018,365(5):942-951.
11 Zhang J W, Chen M Z, Wu S P, et al. Evaluation of VOCs inhibited effects and rheological properties of asphalt with high-content waste rubber powder[J]. Construction and Building Materials,2021,300:No.124320.
12 吴丽洒,赵明月,葛畅,等. 固相萃取-GC/MS法同时测定卷烟主流烟气中的16种多环芳烃[J].烟草科技,2018,51(4):46-52.
Wu Li-sa, Zhao Ming-yue, Ge Chang, et al. Simultaneous determination of 16 polycyclic aromatic hydrocarbons in mainstream cigarette smoke by solid phase extraction-GC/MS[J]. Tobacco Science & Technology,2018,51(4):46-52.
13 Wang J R, Zhang Z Q, Li Z L. Performance evaluation of desulfurized rubber asphalt based on rheological and environmental effects[J]. Journal of Materials in Civil Engineering,2020,32(1): No.04019330.
14 郝晓红,史福霞,肖湾,等. 气相色谱-质谱法测定书写笔用橡塑材料中18种多环芳烃的含量[J].理化检验-化学分册,2022,58(1):7-12.
Hao Xiao-hong, Shi Fu-xia, Xiao Wan, et al. GC-MS determination of 18 polycyclic aromatic hydrocarbons in rubber-plastic materials of writing pens[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis),2022, 58(1):7-12.
15 郭蕾蕾. 顶空-气质联用法测定烟标油墨中VOCs的方法研究[D].昆明:昆明理工大学机电工程学院,2019.
Guo Lei-lei. Study on determination of VOCs in cigarette packaging ink by headspace-gas chromatography/mass spectrometry[D]. Kunming:School of Mechanical and Electrical Engineering, Kunming University of Science and Technology,2019.
16 环境保护部. 环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸气相色谱法: [S].
[1] 崔亚宁,司春棣,凡涛涛,王飞. 水-荷耦合作用下沥青桥面铺装层裂缝扩展分析[J]. 吉林大学学报(工学版), 2024, 54(7): 1988-1996.
[2] 高英力,谷小磊,廖美捷,胡新浪,谢雨彤. SiO2气凝胶/反应性弹性体三元共聚物/多聚磷酸复合改性沥青流变性能与改性机理[J]. 吉林大学学报(工学版), 2024, 54(7): 1978-1987.
[3] 徐永丽,杨煦兰,周吉森,杨松翰,孙明刚. 温拌沥青的沥青烟成分及温拌剂抑烟性能[J]. 吉林大学学报(工学版), 2024, 54(6): 1701-1707.
[4] 孙雅珍,薛博欣,孙岩,王志臣,潘嘉伟. 考虑非均匀性的沥青混合料开裂行为细观模拟[J]. 吉林大学学报(工学版), 2024, 54(6): 1708-1718.
[5] 赵晓康,胡哲,牛振兴,张久鹏,裴建中,温永. 基于非均质模型的水稳碎石材料细观开裂行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1258-1266.
[6] 万铜铜,汪海年,郑文华,冯珀楠,陈玉,张琛. 级配碎石层协调沥青混合料层温度收缩变形行为[J]. 吉林大学学报(工学版), 2024, 54(4): 1045-1057.
[7] 徐进,陈正欢,廖祺硕,郑展骥,张河山. 基于心电数据的高速公路高密度互通立交驾驶负荷[J]. 吉林大学学报(工学版), 2024, 54(10): 2807-2818.
[8] 陈俊,孙振浩,赵成,吴欣怡,王俊鹏. 相变沥青混凝土复合结构降温效果试验分析[J]. 吉林大学学报(工学版), 2024, 54(1): 180-187.
[9] 唐乃膨,薛晨阳,刘少鹏,朱洪洲,李睿. 胶粉改性沥青老化机理及表征评价研究综述[J]. 吉林大学学报(工学版), 2024, 54(1): 22-43.
[10] 王壮,冯振刚,姚冬冬,崔奇,沈若廷,李新军. 导电沥青混凝土研究进展[J]. 吉林大学学报(工学版), 2024, 54(1): 1-21.
[11] 赵胜前,丛卓红,游庆龙,李源. 沥青-集料黏附和剥落研究进展[J]. 吉林大学学报(工学版), 2023, 53(9): 2437-2464.
[12] 马涛,马源,黄晓明. 基于多元非线性回归的智能压实关键参数最优解[J]. 吉林大学学报(工学版), 2023, 53(7): 2067-2077.
[13] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[14] 周正峰,于晓涛,陶雅乐,郑茂,颜川奇. 基于灰色关联分析的树脂与弹性体高黏沥青高温性能评价[J]. 吉林大学学报(工学版), 2023, 53(7): 2078-2088.
[15] 张青霞,侯吉林,安新好,胡晓阳,段忠东. 基于车辆脉冲响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1765-1772.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!