吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1336-1345.doi: 10.13229/j.cnki.jdxbgxb.20230689
Zhen-jiang LI1(
),Li WAN1,Shi-rui ZHOU2,Chu-qing TAO1,Wei WEI2(
)
摘要:
为了及时发现、评估与应对高速公路隧道交通风险隐患,确保隧道运行安全通畅,本文构建了基于时空Transformer网络的隧道运行风险状态动态辨识方法。以隧道交通流全域检测数据与关键断面集计数据为输入,通过空间CNN卷积与时序LSTM对隧道车流不同运行状态的时空分布特征进行无监督提取;利用大样本训练Transformer网络层参数,以捕获隧道交通运行状态在高维风险特征空间的分布与差异,实现隧道交通状态的风险划分与评估。采用真实隧道交通检测数据验证了本文方法的有效性,对隧道运行风险评估精度约为96%。
中图分类号:
| [1] | 周昱. 基于贝叶斯网的高速公路隧道交通事故预测及应急预案研究[D]. 西安:长安大学公路学院, 2018. |
| Zhou Yu. Research on traffic accident prediction and contingency plan of expressway tunnel based on Bayesian network[D]. Xi'an: Highway School, Chang'an University, 2018. | |
| [2] | 牛文静. 高速公路隧道(群)交通流特征研究[D]. 西安: 长安大学公路学院, 2012. |
| Niu Wen-jing. Research on the traffic flow characteristics of the freeway tunnel (group) [D]. Xi'an: Highway School, Chang'an University, 2012. | |
| [3] | Tadaki S, Nishinari K, Kikuchi M, et al. Observation of congested two-lane traffic caused by a tunnel[J]. Journal of the Physical Society of Japan, 2002, 71(9): 2326-2334. |
| [4] | 周林英, 韩静, 赵忠杰. 事件状态下高速公路隧道群的交通流特性分析[J]. 中国科技论文, 2017, 12(7): 839-844. |
| Zhou Lin-ying, Han Jing, Zhao Zhong-jie. The traffic flow characteristics of highway tunnel groups based on cellular automata under the traffic incidents[J]. China Sciencepaper,2017, 12(7): 839-844. | |
| [5] | 倪娜. 山区高速公路隧道密集段交通特性及安全保障技术研究[D]. 西安: 长安大学公路学院, 2017. |
| Ni Na. Research on traffic characteristics and security assurance technologies of tunnel intensive section in mountainous expressway[D]. Xi'an: Highway School, Chang'an University, 2017. | |
| [6] | Tian L L, Jiang J C, Tian L. Safety analysis of traffic flow characteristics of highway tunnel based on artificial intelligence flow net algorithm[J]. Cluster Computing-The Journal of Networks Software Tools and Applications,2019, 22: 573-582. |
| [7] | 李舒涵. 高速公路隧道交通状态判别研究[D]. 西安:长安大学公路学院, 2020. |
| Li Shu-han. Research on traffic state identification of highway tunnel[D]. Xi'an: Highway School, Chang'an University, 2020. | |
| [8] | 张俊儒, 燕波, 龚彦峰. 隧道工程智能监测及信息管理系统的研究现状与展望[J]. 地下空间与工程学报, 2021, 17(2): 567-579. |
| Zhang Jun-ru, Yan Bo, Gong Yan-feng. Research status and prospects of intelligent monitoring technology and information management system for tunnel engineering[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(2): 567-579. | |
| [9] | Lu Y, Liu S, Tian F, et al. Studies and prospects of technologies for monitoring highway tunnel fire[J]. IOP Conference Series Earth and Environmental Science, 2021, 634(1): No.012099. |
| [10] | Zhao Y, Zhang S, Ma C. Application of video detection technology in tunnel traffic safety monitoring system[J]. IPPTA: Quarterly Journal of Indian Pulp and Paper Technical Association, 2018, 30(8): 376-381. |
| [11] | Li S, Zhou Q, Wang K. Video-based tunnel luminance detection[J]. Automation in Construction, 2019, 107(11): No.102900. |
| [12] | 贾磊, 李清勇, 俞浩敏. 基于监控视频的隧道交通冲突预测方法[J]. 北京交通大学学报, 2023, 47(3):61-69. |
| Jia Lei, Li Qing-yong, Yu Hao-min. Method for predicting traffic conflicts in tunnels based on monitoring videos[J]. Journal of Beijing Jiaotong University, 2023, 47(3): 61-69. | |
| [13] | Chen Z, Wen H. Modeling a car-following model with comprehensive safety field in freeway tunnels[J]. Journal of Transportation Engineering Part A-Systems, 2022, 148(7): No.04022040. |
| [14] | 陈丰, 姜茗馨, 朱明, 等. 基于碰撞时间的大流量隧道口追尾隐患概率模型构建[J]. 北京交通大学学报, 2020, 44(6): 90-96. |
| Chen Feng, Jiang Ming-xin, Zhu Ming, et al. A rear-end collision probability model at heavy-traffic tunnel entrance based on time-to-collision[J], Journal of Beijing Jiaotong University, 2020, 44(6): 90-96. | |
| [15] | 陈娟娟. 公路隧道交通安全状态特征选择与评估方法研究[D]. 福州:福州大学土木工程学院, 2014. |
| Chen Juan-juan. Research on traffic safety status feature selection and evaluation methods of highway tunnel[D]. Fuzhou: School of Civil Engineering, Fuzhou University, 2014. | |
| [16] | 王玉婷. 特长隧道交通事故车辆排队长度演变分析与建模[D].重庆: 重庆交通大学交通运输学院, 2022. |
| Wang Yu-ting. Analysis and modeling of vehicle queuing length evolution by traffic accident of extra-long tunnel [D].Chongqing: College of Traffic and Transportation, Chongqing Jiaotong University, 2022. | |
| [17] | 郑凯. 基于多源数据的城市桥隧结合段交通运行风险预测方法研究[D]. 重庆: 重庆交通大学交通运输学院, 2019. |
| Zheng Kai. Research on traffic operation risk prediction method for urban bridge tunnel combined sections based on multisource data[D]. Chongqing: College of Traffic and Transportation, Chongqing Jiaotong University, 2019. | |
| [18] | Tympakianaki A, Koutsopoulos H N, Jenelius E. Anatomy of tunnel congestion: causes and implications for tunnel traffic management[J]. Tunnelling and Underground Space Technology, 2019, 83:498-508. |
| [19] | Gu J X, Wang Z H, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77, 354-377. |
| [20] | Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
| [21] | Tay Y, Dehghani M, Bahri D, et al. Efficient transformers: a survey[J]. ACM Computing Surveys, 2022, 55(6): 1-28. |
| [22] | 李海涛. 基于深度学习的交通流运行风险评估方法研究[D]. 长春: 吉林大学交通学院, 2021. |
| Li Hai-tao. Research on traffic flow operation risk evaluation based on deep learning[D]. Changchun: College of Transportation, Jilin University, 2021. | |
| [23] | 李晓璐, 于昕明, 杜崇. 基于权值优化的FCM-MSVM算法及其在高速公路状态判别中的应用[J]. 北京交通大学学报, 2018, 42(4): 72-78, 84. |
| Li Xiao-lu, Yu Xin-ming, Du Chong. FCM-MSVM algorithm based on weight optimization and its application in state identification of freeway[J]. Journal of Beijing Jiaotong University, 2018, 42(4): 72-78, 84. | |
| [24] | 张博. 基于机器学习的交通状态短时预测方法研究[D]. 长春:吉林大学软件学院, 2018. |
| Zhang Bo. Research on short-term prediction of traffic state based on machine learning[D]. Changchun:College of Software, Jilin University, 2018. | |
| [25] | Liu Q, Lu J, Zhao K, et al. Multiple Naïve bayes classifiers ensemble for traffic incident detection[J]. Mathematical Problems in Engineering, 2014(1):No.383671. |
| [26] | 刘擎超, 陆建, 陈淑燕. 基于随机森林的交通事件检测方法设计与分析[J]. 东南大学学报:英文版, 2014, 30(1): 88-95. |
| Liu Qing-chao, Lu Jian, Chen Shu-yan. Design and analysis of traffic incident detection based on random forest[J]. Journal of Southeast University(English Edition), 2014, 30(1): 88-95. |
| [1] | 李健,刘欢,李艳秋,王海瑞,关路,廖昌义. 基于THGS算法优化ResNet-18模型的图像识别[J]. 吉林大学学报(工学版), 2025, 55(5): 1629-1637. |
| [2] | 文斌,丁弈夫,杨超,沈艳军,李辉. 基于自选择架构网络的交通标志分类算法[J]. 吉林大学学报(工学版), 2025, 55(5): 1705-1713. |
| [3] | 张汝波,常世淇,张天一. 基于深度学习的图像信息隐藏方法综述[J]. 吉林大学学报(工学版), 2025, 55(5): 1497-1515. |
| [4] | 张文会,付博,周舸,乔晓田. 城市公共汽车全生命周期碳排放测算[J]. 吉林大学学报(工学版), 2025, 55(4): 1232-1240. |
| [5] | 赵孟雪,车翔玖,徐欢,刘全乐. 基于先验知识优化的医学图像候选区域生成方法[J]. 吉林大学学报(工学版), 2025, 55(2): 722-730. |
| [6] | 刘元宁,臧子楠,张浩,刘震. 基于深度学习的核糖核酸二级结构预测方法[J]. 吉林大学学报(工学版), 2025, 55(1): 297-306. |
| [7] | 徐慧智,蒋时森,王秀青,陈爽. 基于深度学习的车载图像车辆目标检测和测距[J]. 吉林大学学报(工学版), 2025, 55(1): 185-197. |
| [8] | 李路,宋均琦,朱明,谭鹤群,周玉凡,孙超奇,周铖钰. 基于RGHS图像增强和改进YOLOv5网络的黄颡鱼目标提取[J]. 吉林大学学报(工学版), 2024, 54(9): 2638-2645. |
| [9] | 张磊,焦晶,李勃昕,周延杰. 融合机器学习和深度学习的大容量半结构化数据抽取算法[J]. 吉林大学学报(工学版), 2024, 54(9): 2631-2637. |
| [10] | 乔百友,武彤,杨璐,蒋有文. 一种基于BiGRU和胶囊网络的文本情感分析方法[J]. 吉林大学学报(工学版), 2024, 54(7): 2026-2037. |
| [11] | 涂辉招,鹿畅,陆淼嘉,李浩. 基于避险脱离的自动驾驶路测安全影响因素[J]. 吉林大学学报(工学版), 2024, 54(7): 1935-1943. |
| [12] | 郭昕刚,何颖晨,程超. 抗噪声的分步式图像超分辨率重构算法[J]. 吉林大学学报(工学版), 2024, 54(7): 2063-2071. |
| [13] | 张丽平,刘斌毓,李松,郝忠孝. 基于稀疏多头自注意力的轨迹kNN查询方法[J]. 吉林大学学报(工学版), 2024, 54(6): 1756-1766. |
| [14] | 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776. |
| [15] | 陆玉凯,袁帅科,熊树生,朱绍鹏,张宁. 汽车漆面缺陷高精度检测系统[J]. 吉林大学学报(工学版), 2024, 54(5): 1205-1213. |
|