吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1629-1637.doi: 10.13229/j.cnki.jdxbgxb.20230775
李健1(
),刘欢1,李艳秋2(
),王海瑞1,关路1,廖昌义1
Jian LI1(
),Huan LIU1,Yan-qiu LI2(
),Hai-rui WANG1,Lu GUAN1,Chang-yi LIAO1
摘要:
为快速、准确识别水稻褐斑病图像,提出一种改进的THGS-ResNet-18识别模型。首先,应用Tent混沌映射改进饥饿游戏搜索(Hunger game search, HGS)算法,解决HGS算法种群初始化随机性过大的问题;其次,应用改进后的HGS算法优化ResNet-18模型的超参数;最后,应用改进模型THGS-ResNet-18针对5064张水稻叶片图像进行识别,且与经过其他4个群体智能算法优化的ResNet-18模型的7个评价指标进行了比较。实验表明,相较于其他4种算法,本文所提算法优化模型的准确率提升了5.22~6.09百分点,敏感性提升了3.53~5.31百分点,特异性提升了7.38百分点,精度提升了6.95~7.13百分点,召回率提升了3.53~5.31百分点,F-measure提升了5.22~6.20百分点,G-mean提升了5.24~6.13百分点。
中图分类号:
| [1] | Chen Y S, Wang Y, Gu Y F, et al. Deep learning ensemble for hyperspectral image classification [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1882-1897. |
| [2] | Lee D, Lee J, Ko J, et al. Deep learning in MR image processing [J]. Investigative Magnetic Resonance Imaging, 2019, 23(2): 81-99. |
| [3] | Kwon D, Kim H, Kim J, et al. A survey of deep learning-based network anomaly detection [J]. Cluster Computing-the Journal of Networks Software Tools and Applications, 2019, 22: 949-961. |
| [4] | Hsieh T H, Kiang J F. Comparison of CNN algorithms on hyperspectral image classification in agricultural lands [J]. Sensors, 2020, 20(6): s20061734. |
| [5] | Hua S, Xu M J, Xu Z F, et al. Multi-feature decision fusion algorithm for disease detection on crop surface based on machine vision [J]. Neural Computing & Applications, 2022, 34(12): 9471-9484. |
| [6] | Sathya K, Rajalakshmi M. RDA- CNN: enhanced super resolution method for rice plant disease classification [J]. Computer Systems Science and Engineering, 2022, 42(1): 33-47. |
| [7] | Wang Y B, Wang H F, Peng Z H. Rice diseases detection and classification using attention based neural network and bayesian optimization [J]. Expert Systems with Applications, 2021, 178: 114770. |
| [8] | Chen J Y, Lin X, Gao S T D, et al. A fast evolutionary learning to optimize CNNinspec keywordsother keywordskey words [J]. Chinese Journal of Electronics, 2020, 29(6): 1061-1073. |
| [9] | Chen K C, Huang Y W, Liu G M, et al. A hierarchical k-means-assisted scenario-aware reconfigurable convolutional neural network [J]. IEEE Transactions on Very Large Scale Integration Systems, 2021, 29(1): 176-188. |
| [10] | Song Y, He B, Liu P. Real-time object detection for auvs using self-cascaded convolutional neural networks [J]. IEEE Journal of Oceanic Engineering, 2021, 46(1): 56-67. |
| [11] | 刘培勇,董洁,谢罗峰,等. 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J].吉林大学学报: 工学版, 2023, 53(5): 1449-1457. |
| Liu Pei-yong, Dong Jie, Xie Luo-feng, et al. Magnetic tile surface defect detection algorithm based on multi-branch convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(5): 1449-1457. | |
| [12] | Yang Y T, Chen H L, Heidari A A, et al. Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts [J]. Expert Systems with Applications, 2021, 177: 114864. |
| [13] | Zhang Y D, Mo Y B. Chaotic adaptive sailfish optimizer with genetic characteristics for global optimization [J]. Journal of Supercomputing, 2022, 78(8): 10950-10996. |
| [14] | Ma J, Hao Z Y, Sun W J. Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems [J]. Information Processing & Management, 2022, 59(2): 102854. |
| [15] | Tsuneda A. Orthogonal chaotic binary sequences based on tent map and walsh functions [J]. Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2021, 104(9): 1349-1352. |
| [16] | Valle J, Machicao J, Bruno O M. Chaotical PRNG based on composition of logistic and tent maps using deep-zoom [J]. Chaos Solitons & Fractals, 2022, 161: 112296. |
| [17] | Liu H, Li J, Du J, et al. Identification of smoke from straw burning in remote sensing images with the improved yolov5s algorithm [J]. Atmosphere, 2022, 13(6): 13060925. |
| [18] | Huang Y, Yu K, Wu N, et al. Slope shape and edge intelligent recognition technology based on deep neural sensing network [J]. 2022, 01: 5901803. |
| [19] | Zhang Y Q, Peng L X, Ma G L, et al. Dynamic gesture recognition model based on millimeter-wave radar with ResNet-18 and LSTM [J]. Frontiers in Neurorobotics, 2022, 16: 909137. |
| [20] | 杨怀江,王二帅,隋永新,等. 简化型残差结构和快速深度残差网络[J].吉林大学学报: 工学版, 2022, 52(6): 1413-1421. |
| Yang Huai-jiang, Wang Er-shuai, Sui Yong-xin, et al. Simplified residual structure and fast deep residual network [J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(6): 1413-1421. | |
| [21] | Chen X. Vehicle feature recognition via a convolutional neural network with an improved bird swarm algorithm [J]. Journal of Internet Technology, 2023, 24(2): 421-432. |
| [22] | He X X, Shan W F, Zhang R L, et al. Improved colony predation algorithm optimized convolutional neural networks for electrocardiogram signal classification [J]. Biomimetics, 2023, 8(3): 8030268. |
| [1] | 文斌,丁弈夫,杨超,沈艳军,李辉. 基于自选择架构网络的交通标志分类算法[J]. 吉林大学学报(工学版), 2025, 55(5): 1705-1713. |
| [2] | 张汝波,常世淇,张天一. 基于深度学习的图像信息隐藏方法综述[J]. 吉林大学学报(工学版), 2025, 55(5): 1497-1515. |
| [3] | 李振江,万利,周世睿,陶楚青,魏巍. 基于时空Transformer网络的隧道交通运行风险动态辨识方法[J]. 吉林大学学报(工学版), 2025, 55(4): 1336-1345. |
| [4] | 赵孟雪,车翔玖,徐欢,刘全乐. 基于先验知识优化的医学图像候选区域生成方法[J]. 吉林大学学报(工学版), 2025, 55(2): 722-730. |
| [5] | 刘元宁,臧子楠,张浩,刘震. 基于深度学习的核糖核酸二级结构预测方法[J]. 吉林大学学报(工学版), 2025, 55(1): 297-306. |
| [6] | 徐慧智,蒋时森,王秀青,陈爽. 基于深度学习的车载图像车辆目标检测和测距[J]. 吉林大学学报(工学版), 2025, 55(1): 185-197. |
| [7] | 李路,宋均琦,朱明,谭鹤群,周玉凡,孙超奇,周铖钰. 基于RGHS图像增强和改进YOLOv5网络的黄颡鱼目标提取[J]. 吉林大学学报(工学版), 2024, 54(9): 2638-2645. |
| [8] | 张磊,焦晶,李勃昕,周延杰. 融合机器学习和深度学习的大容量半结构化数据抽取算法[J]. 吉林大学学报(工学版), 2024, 54(9): 2631-2637. |
| [9] | 乔百友,武彤,杨璐,蒋有文. 一种基于BiGRU和胶囊网络的文本情感分析方法[J]. 吉林大学学报(工学版), 2024, 54(7): 2026-2037. |
| [10] | 郭昕刚,何颖晨,程超. 抗噪声的分步式图像超分辨率重构算法[J]. 吉林大学学报(工学版), 2024, 54(7): 2063-2071. |
| [11] | 张丽平,刘斌毓,李松,郝忠孝. 基于稀疏多头自注意力的轨迹kNN查询方法[J]. 吉林大学学报(工学版), 2024, 54(6): 1756-1766. |
| [12] | 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776. |
| [13] | 陆玉凯,袁帅科,熊树生,朱绍鹏,张宁. 汽车漆面缺陷高精度检测系统[J]. 吉林大学学报(工学版), 2024, 54(5): 1205-1213. |
| [14] | 李雄飞,宋紫萱,朱芮,张小利. 基于多尺度融合的遥感图像变化检测模型[J]. 吉林大学学报(工学版), 2024, 54(2): 516-523. |
| [15] | 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332. |
|