吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1567-1575.doi: 10.13229/j.cnki.jdxbgxb.20230789

• 交通运输工程·土木工程 • 上一篇    下一篇

网约车出行需求影响因素多尺度空间异质性分析

潘义勇(),徐家聪,尤逸文,全勇俊   

  1. 南京林业大学 汽车与交通工程学院,南京 210037
  • 收稿日期:2023-07-27 出版日期:2025-05-01 发布日期:2025-07-18
  • 作者简介:潘义勇(1980-),男,副教授,博士.研究方向:交通运输规划与管理.E-mail:uoupanyg@njfu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51508280)

Multi-scale spatial heterogeneity analysis of influencing factors of ride-hailing travel demand

Yi-yong PAN(),Jia-cong XU,Yi-wen YOU,Yong-jun QUAN   

  1. College of Automobile and Traffic Engineering,Nanjing Forestry University,Nanjing 210037,China
  • Received:2023-07-27 Online:2025-05-01 Published:2025-07-18

摘要:

为探索不同出行距离尺度下网约车出行需求影响机理,基于多源数据对不同距离网约车出行需求进行分析。以长短距离网约车出行需求为因变量构建多尺度地理加权回归模型,揭示道路网、土地利用、人口分布和公共交通等建成环境因素对长短距离网约车出行需求的影响及其空间异质性。结果表明:MGWR的拟合结果优于传统地理加权回归模型和最小二乘法模型,长短距离网约车出行需求影响因素具有显著的空间异质性;主干路密度在市中心与短距离网约车出行需求呈正相关,在城市外围与长距离网约车出行需求呈负相关;人口密度在城市外围与长距离网约车出行需求呈正相关,在中心城区与短距离网约车出行需求呈负相关;短距离网约车在市中心与公共交通之间存在竞争,长距离网约车在城市周边补充公共交通服务的不足。研究结果有助于动态优化车辆配置调度,促进网约共享出行的可持续发展。

关键词: 交通运输系统工程, 网约共享出行, 空间异质性, 建成环境, 多尺度地理加权回归

Abstract:

In order to explore the influential mechanism of multi-scale ride-hailing travel demand, the travel demand of ride-hailing are analyzed based on the multi-source data. Constructs a multi-scale geographically weighted regression (MGWR) model with short and long distance ride-hailing travel demand as the dependent variable. The effects of built environmental attributes such as road network, land use, population density and public transportation on the demand for ride-hailing and their spatial heterogeneity were revealed. The model results show that the fit of the multi-scale geographical weighted regression model is better than the traditional geographical weighted regression (GWR) model and the ordinary least square (OLS) model, and the influential factors for ride-hailing travel demand have significant spatial heterogeneity. The primary roads density is positively correlated with the short-distance ride-hailing in the city center, and negatively correlated with long-distance ride-hailing in the city periphery. Population density is positively correlated with long-distance ride-hailing in the suburbs, and negatively correlated with the demand for short-distance ride-hailing in the central urban area. Short-distance ride-hailing competes with public transport in the urban centers, while long-distance ride-hailing complements the lack of public transport services around the city. The findings can not only dynamically optimize vehicle configuration and scheduling, but also promote the sustainable development of ride-hailing and shared mobility.

Key words: engineering of communications and transportation system, ride-hailing shared mobility, spatial heterogeneity, built environment, multi-scale geographically weighted regression

中图分类号: 

  • U491

图1

研究区域概况"

表1

变量描述统计结果"

变量描述平均值标准差
因变量
LDT

工作日长距离网约车

订单量

1 280.193 796.45
SDT

工作日短距离网约车

订单量

1 280.376 034.85
道路网指标
主干路X1主干路密度/(km·km-23.633.33
次干路X2次干路密度/(km·km-26.4413.19
支路X3支路密度/(km·km-24.063.44
土地利用指标
人口分布X4人口密度/(人·km-23 928.266 048.32
餐饮服务X5餐饮服务设施POI数量24.0841.51
公司企业X6公司企业POI数量23.8540.70
购物服务X7购物服务设施POI数量67.51119.56
金融服务X8金融服务设施POI数量3.047.17
科教服务X9科教文化服务设施POI数量15.4825.57
生活服务X10生活服务设施POI数量68.14117.94
休闲服务X11休闲服务设施POI数量9.3116.78
医疗服务X12医疗机构设施POI数量8.9014.93
政府机构X13政府单位POI数量11.5517.36
住宿服务X14酒店住宿设施POI数量3.459.04
商务住宅X15小区住宅POI数量8.6918.44
风景名胜X16景点服务设施POI数量0.932.76
公共交通指标
地面公交X17公交站点数量4.634.48
地铁X18地铁站点数量0.651.91

表2

多重共线性检验及空间自相关检验结果"

变量

长距离

网约车

短距离

网约车

空间自相关VIF

回归

系数

回归

系数

Moran's IZP
LDT0.452193.6130.000
SDT0.376161.9720.000
主干路0.063***0.057***0.10243.3610.0001.112

人口

分布

0.200***0.164***0.359156.4900.0001.441

公司

企业

0.103***0.093***0.20186.0610.0001.601

购物

服务

0.253***0.190***0.20588.1960.0002.325

休闲

服务

0.266***0.264***0.255108.8420.0002.077

医疗

服务

-0.115***-0.160***0.10344.0250.0001.622

商务

住宅

0.256***0.465***0.323137.6490.0002.279

地面

公交

-0.052***-0.250***0.297125.9700.0002.167

表3

OLS、GWR与MGWR模型结果比较"

模型长距离网约车出行需求 (LDT)短距离网约车需求 (SDT)
AICCR2R2Adj带宽AICCR2R2Adj带宽
OLS3 344.3080.6020.6001 7343 540.1290.5540.5521 734
GWR1 311.5930.9360.914751 250.9370.9380.91775
MGWR627.8780.9530.939[61,417]-312.4000.9740.966[47,1 733]

表4

MGWR模型估计结果"

变量平均值标准差最小值中位数最大值带宽
LDT常数项-0.1180.240-0.332-0.2170.82461
主干路0.0190.069-0.1180.0020.53661
人口分布0.0780.088-0.1290.0690.71997
公司企业0.0080.069-0.2130.0010.39961
购物服务0.0380.111-0.139-0.0020.496409
休闲服务0.1140.145-0.0290.0460.74661
医疗服务0.0540.0350.0070.0400.154417
商务住宅0.0300.088-0.2040.0100.47261
地面公交0.0590.088-0.0390.0250.47968
SDT常数项-0.1430.165-0.236-0.2050.76061
主干路0.0130.055-0.0600.0000.49959
人口分布0.0240.052-0.0980.0050.32261
公司企业0.0050.050-0.1800.0010.35961
购物服务0.0180.070-0.1960.0030.48347
休闲服务0.0530.111-0.0110.0050.58061
医疗服务0.0040.037-0.073-0.0010.24154
商务住宅0.0490.109-0.0600.0040.57347
地面公交-0.0060.000-0.007-0.006-0.0051 733

图2

MGWR模型回归系数的空间分布"

[1] 陈喜群. 网约共享出行研究综述[J]. 交通运输系统工程与信息, 2021, 21(5): 77-90.
Chen Xi-qun. A survey of research on network-sharing travel [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 77-90.
[2] Gehrke S R, Felix A, Reardon T G. Substitution of ride-hailing services for more sustainable travel options in the greater Boston region[J]. Transportation Research Record, 2019, 2673(1): 438-446.
[3] Acheampong R A, Siiba A, Okyere D K, et al. Mobility-on-demand: An empirical study of internet-based ride-hailing adoption factors, travel characteristics and mode substitution effects[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102638.
[4] 钟军, 林岩, 杭宇. 中国城市网约车服务对公交使用量的影响[J]. 交通运输系统工程与信息, 2020, 20(5): 234-239.
Zhong Jun, Lin Yan, Hang Yu. Impact of ride-hailing service on use of public transport in China's cities [J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5): 234-239.
[5] Javid M A, Abdullah M, Ali N. Travellers' perceptions about ride-hailing services in Lahore: An extension of the theory of planned behavior[J]. Asian Transport Studies, 2022, 8: 100083.
[6] 袁亮, 吴佩勋. 城市居民对网约车与出租车的选择意愿及影响因素研究: 基于江苏省调查数据的 Logistic 分析[J]. 软科学, 2018, 32(4): 120-123.
Yuan Liang, Wu Pei-xun. Study on the choice and influence factors of urban residents' selection of network-booking and taxis: Logistic analysis based on the survey data of Jiangsu province[J]. Soft Science, 2018, 32(4): 120-123.
[7] Hou Y, Garikapati V, Weigl D, et al. Factors influencing willingness to pool in ride-hailing trips[J]. Transportation Research Record, 2020, 2674(5): 419-429.
[8] Huang G, Qiao S, Yeh A G O. Spatiotemporally heterogeneous willingness to ridesplitting and its relationship with the built environment: A case study in Chengdu, China[J]. Transportation Research Part C: Emerging Technologies, 2021, 133: 103425.
[9] Barajas J M, Brown A. Not minding the gap: Does ride-hailing serve transit deserts?[J]. Journal of Transport Geography, 2021, 90: 102918.
[10] Zheng Z, Zhang J, Zhang L, et al. Understanding the impact of the built environment on ride-hailing from a spatio-temporal perspective: A fine-scale empirical study from China[J]. Cities, 2022, 126: 103706.
[11] Wang S, Noland R B. Variation in ride-hailing trips in Chengdu, China[J]. Transportation Research Part D: Transport and Environment, 2021, 90: 102596.
[12] 许心越,孔庆雪,李建民,等.建成环境对轨道交通客流的时空异质性影响分析[J].交通运输系统工程与信息,2023,23(4):194-202.
Xu Xin-yue, Kong Qing-xue, Li Jian-min, et al. Analysis of spatio-temporal heterogeneity impact of built environment on rail transit passenger flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2023,23(4):194-202.
[13] 尹超英,邵春福,王晓全,等.考虑空间异质性的建成环境对通勤方式选择的影响[J].吉林大学学报: 工学版, 2020,50(2):543-548.
Yin Chao-ying, Shao Chun-fu, Wang Xiao-quan, et al. Influence of built environment on commuting mode choice considering spatial heterogeneity[J]. Journal of Jilin University (Engineering and Technology Edition), 2020,50(2):543-548.
[14] Yu H, Peng Z R. Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression[J]. Journal of Transport Geography, 2019, 75: 147-163.
[15] 马书红,廖国美,黄岩, 等. 建成环境对交通小区地铁通勤客流的异质性影响[J].吉林大学学报:工学版, 2024, 54 (7): 1913-1922.
Ma Shu-hong, Liao Guo-mei, Huang Yan, et al. Heterogeneity of built environment on commuter passenger flow of subway in traffic analysis zones[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (7): 1913-1922.
[16] An R, Wu Z, Tong Z, et al. How the built environment promotes public transportation in Wuhan: A multiscale geographically weighted regression analysis[J]. Travel Behaviour and Society, 2022, 29: 186-199.
[17] 龙雪琴,赵欢,周萌,等.成都市建成环境对网约车载客点影响的时空分异性研究[J].地理科学,2022,42(12):2076-2084.
Long Xue-qin, Zhao Huan, Zhou Meng, et al. Spatiotemporal heterogeneity of the impact of built environment in Chengdu on online car-hailing passengers' pick-up points[J]. Scientia Geographica Sinica, 2022, 42(12): 2076-2084.
[18] Liu X, Gong L, Gong Y, et al. Revealing travel patterns and city structure with taxi trip data[J]. Journal of Transport Geography, 2015, 43: 78-90.
[19] Chen C, Feng T, Ding C, et al. Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model[J]. Journal of Transport Geography, 2021, 96: 103172.
[20] Hayes A F, Cai L. Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation[J]. Behavior Research Methods, 2007, 39: 709-722.
[21] Du M, Cheng L, Li X, et al. Spatial variation of ridesplitting adoption rate in Chicago[J]. Transportation Research Part A: Policy and Practice, 2022, 164: 13-37.
[22] Thompson E S, Saveyn P, Declercq M, et al. Characterisation of heterogeneity and spatial autocorrelation in phase separating mixtures using Moran's I[J]. Journal of Colloid and Interface Science, 2018, 513: 180-187.
[23] Vandenbulcke G, Dujardin C, Thomas I, et al. Cycle commuting in Belgium: Spatial determinants and 're-cycling'strategies[J]. Transportation Research Part A: Policy and Practice, 2011, 45(2): 118-137.
[24] Moran P A P. Notes on continuous stochastic phenomena[J]. Biometrika, 1950, 37(1): 17-23.
[25] Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28: 281-298.
[1] 卢凯明,陈艳艳,仝瑶,张健,李永行,罗莹. 数据驱动的信号交叉口排队尾车驶离状态预测[J]. 吉林大学学报(工学版), 2025, 55(4): 1275-1286.
[2] 周成栋,宋菲,赵小梅,姚俊杰. 基于多模式双动态演化的拥堵收费模型[J]. 吉林大学学报(工学版), 2025, 55(4): 1319-1327.
[3] 张河山,范梦伟,谭鑫,郑展骥,寇立明,徐进. 基于改进YOLOX的无人机航拍图像密集小目标车辆检测[J]. 吉林大学学报(工学版), 2025, 55(4): 1307-1318.
[4] 秦严严,肖腾飞,罗钦中,王宝杰. 雾天高速公路车辆跟驰安全分析与控制策略[J]. 吉林大学学报(工学版), 2025, 55(4): 1241-1249.
[5] 宋现敏,湛天舒,李海涛,刘博,张云翔. 考虑用户成本和泊位利用率的停车预约分配模型[J]. 吉林大学学报(工学版), 2025, 55(4): 1287-1297.
[6] 郭祎,魏书威,姜涛. 基于区位势能和多源数据的城市客运交通规划算法[J]. 吉林大学学报(工学版), 2025, 55(4): 1328-1335.
[7] 潘义勇,徐翔宇. 数据不平衡的MobileViT网络交通事故严重程度预测模型[J]. 吉林大学学报(工学版), 2025, 55(3): 947-953.
[8] 陈永恒,杨家伟,孙经宇. 借道左转交叉口的网联左转车辆最佳轨迹控制[J]. 吉林大学学报(工学版), 2025, 55(2): 614-622.
[9] 陈发城,鲁光泉,林庆峰,张浩东,马社强,刘德志,宋会军. 有条件自动驾驶下驾驶人接管行为综述[J]. 吉林大学学报(工学版), 2025, 55(2): 419-433.
[10] 何永明,冯佳,魏堃,万亚楠. 超高速公路曲线路段车辆制动侧滑影响因素分析[J]. 吉林大学学报(工学版), 2025, 55(2): 591-602.
[11] 吴娇蓉,刘旭东. 不同住房类型空间单元的建成环境对通勤方式选择的影响分析[J]. 吉林大学学报(工学版), 2025, 55(2): 554-565.
[12] 王长帅,徐铖铖,任卫林,彭畅,佟昊. 自动驾驶接管过程中驾驶能力恢复状态对交通流振荡特性的影响[J]. 吉林大学学报(工学版), 2025, 55(1): 150-161.
[13] 年光跃,潘海啸,孙健. 城市建成环境与道路交通运行关系[J]. 吉林大学学报(工学版), 2025, 55(1): 141-149.
[14] 周锡浈,宫贺,李敦敦,季彦婕,严杰. 建成环境对路内停车泊位使用率的非线性影响模型[J]. 吉林大学学报(工学版), 2024, 54(9): 2520-2530.
[15] 严利鑫,曾涛,贺宜,郭军华,胡鑫辉. 共驾型智能车辆人机接管行为序列编码与解析[J]. 吉林大学学报(工学版), 2024, 54(9): 2547-2556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王桂萍,贾亚洲,申桂香,乔巍巍 . 基于故障比重比的加工中心整机故障分析
及可靠性改进措施
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 119 -0122 .
[2] 黄新林, 王钢, 刘春刚. 基于JPEG2000的失真模型[J]. 吉林大学学报(工学版), 2010, 40(03): 852 -0855 .
[3] 陈炳锟, 申桂香, 张英芝, 王晓峰, 高文礼, 王志琼. 随机模糊理论下的数控机床动态危害性[J]. 吉林大学学报(工学版), 2010, 40(增刊): 262 -0265 .
[4] 刘寒冰;张淼;魏健 . 结构动力响应分析的多重网格方法[J]. 吉林大学学报(工学版), 2008, 38(03): 619 -0623 .
[5] 周逢道, 王金玉, 唐红忠, 张赫, 周继瑜. 近地表电磁探测多频数字驱动信号产生技术[J]. 吉林大学学报(工学版), 2013, 43(03): 682 -687 .
[6] 李志扬, Havyarimana Claver, 李亚兰. 采用低分辨率空间光调制器的大尺寸高像质空中三维立体成像[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 459 -462 .
[7] 张铁华,王少君,刘迪茹,袁媛,于亚莉,殷涌光. 脉冲电场提取西藏灵菇胞外多糖条件优化[J]. 吉林大学学报(工学版), 2011, 41(03): 882 -886 .
[8] 寇淑清, 杨慎华, 黄良驹, 傅沛福. 用约束分流法冷锻成形高精度直齿圆柱齿轮[J]. 吉林大学学报(工学版), 2000, 30(02): 19 -23 .
[9] 钟玉林, 温旭辉, 刘钧, 刘志宏. 国产450A-600V车用智能功率模块的研发[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 316 -320 .
[10] 曹婧华, 孔繁森, 冉彦中, 宋蕊辰. 基于模糊自适应PID控制的空压机背压控制器设计[J]. 吉林大学学报(工学版), 2018, 48(3): 781 -786 .