Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1528-1536.doi: 10.13229/j.cnki.jdxbgxb.20221223

Previous Articles    

Construction method of virtual simulation machining platform for CNC machine tools with multi-spindle heads

An-jiang CAI(),Pei-peng WANG,Chen-xi WANG,Ling LI   

  1. School of Mechanical and Electrical Engineering,Xi 'an University of Architecture and Technology,Xi' an 710055,China
  • Received:2022-11-29 Online:2024-06-01 Published:2024-07-23

Abstract:

Aiming at the problem that current the CNC machine tools with multi-spindle heads cannot realize the multi-spindle head switching call in the virtual simulation process, a method of constructing a virtual simulation processing platform of the multi-spindle CNC machine tool is proposed. Firstly, as a multi-spindle head library for CNC machine tools with multi-spindle heads, the virtual axis are created, the topology of each motion axis is constructed, and the geometric model of virtual CNC machine tools is constructed. Secondly, the macro and variables of the CNC system are used for secondary development. By changing the position of the spindle head components in the virtual CNC machine tool structure project tree and the geometric model, the macro program is obtained,and by the macro calls instructions, it is used as a subroutine replace performing the functional instructions for changing the spindle head in the NC program. So that when the command to replace the spindle head is executed, the virtual CNC machine tool actually executes the macro program of changing the spindle head, and the dynamic switching call of the spindle head during the virtual simulation processing of the multi-spindle head CNC machine tool is realized. Finally, using this method, the virtual simulation processing platform of UniForce6 floor boring and milling machining center was constructed, and the simulation processing of a box part was completed. The results show that the virtual simulation processing platform can realize the continuous simulation of multiple spindle heads, which meets the actual processing conditions, and can check the interference and collision situation when changing the spindle head, which further improves the effectiveness of the virtual simulation processing of the CNC machine tool.

Key words: mechanical manufacturing, CNC machine tools with multi-spindle heads, virtual axis, topology structure, macro program, continuous simulation machining

CLC Number: 

  • TG659

Fig.1

Construction process of virtual simulation processing platform for CNC machine toolwith multi-spindle heads"

Fig.2

Multi-spindle head CNC machine tool"

Fig.3

Topology of motion axis of virtual CNC machine tool with multi-spindle heads"

Fig.4

Schematic representation of subroutine calls"

Fig.5

Process diagram for calling spindle head"

Fig.6

Subprogram flow chart"

Fig.7

Topology of UniForce6 virtual CNC machine tool"

Fig.8

Structure project tree of UniForce6 virtual CNC machine tool"

Fig.9

Geometric model of UniForce6 virtual CNC machine tool"

Fig.10

Schematic diagram of V-axis (virtual-axis)component configuration"

Fig.11

Schematic diagram of tool assembly configuration"

Fig.12

Schematic diagram of replacement spindlehead command replacement configuration"

Table 1

Partial macros contained in subprogram"

宏名作用
SaveUnits保存已激活的单元以在子程序之后恢复
UnitsMetric指定在子程序中被使用的单元
CaxisMachineMotionC轴运动
ProcessMotion运动执行

TurnOnOff

GagePivotOffset

打开/关闭轴偏置计算,0代表关闭,

1代表打开

ConnectCompName定义组件连接
ConnectToCompName

连接到组件,一般与宏ConnectCompName

配合使用,改变组件间的相互依附关系

ActiveTool激活刀具
PivotOffsetCompName定义计算轴偏置的组件名称
RestoreUnits储存单元
MacroVar参数传递

Fig.13

Partial initial program segments of subroutines"

Fig.14

Uninstall program segments of vertical spindle head"

Fig.15

Loading program segments of horizontal spindle head"

Fig.16

Schematic diagram of box parts under the reducer"

Fig.17

Schematic diagram of calling vertical spindle head"

Fig.18

Schematic diagram of position change of thevertical spindle head assembly in structuralproject tree"

Fig.19

Schematic diagram of unloading of the vertical spindle head"

Fig.20

Schematic diagram of calling horizontal spindle head"

Fig.21

Schematic diagram of position changes of thehorizontal spindle head assembly in structural project tree"

Fig.22

Automatic comparison report"

1 胡涞,查俊,朱永生,等.基础装备制造及高档集成数控机床研究进展[J].中国机械工程,2021,32(16):1891-1903.
Hu Lai, Zha Jun, Zhu Yong-sheng, et al. Research progress in basic equipment manufacturing and high-grade integrated CNC machine tools[J]. China Mechanical Engineering, 2021,32(16): 1891-1903.
2 崔榕芳,陈蔚芳,潘立剑,等.基于遗传算法的多主轴头加工空行程轨迹规划[J].计算机集成制造系统,2022,28(2):507-517.
Cui Rong-fang, Chen Wei-fang, Pan Li-jian, et al. Empty travel trajectory planning of multi-spindle head processing based on genetic algorithm[J]. Computer Integrated Manufacturing System, 2022,28(2): 507-517.
3 吴志清.VERICUT虚拟机床技术在五轴加工中的应用研究[J].机床与液压,2016,44(16):66-68, 76.
Wu Zhi-qing. Application of VERICUT virtual machine tool in five axis processing[J]. Machine Tool and Hydraulic Pressure, 2016,44(16): 66-68, 76.
4 Yu D Y, Ding Z. Post-processing algorithm of a five-axis machine tool with dual rotary tables based on the TCS method[J]. The International Journal of Advanced Manufacturing Technology, 2019,102(9): 3937-3944.
5 Chen Y D, Wei H X, Wang T M. Three-dimensional tool radius compensation for a 5-Axis peripheral milling[J]. Advanced Science Letters, 2011, 4(8): 3093-3096.
6 Tang J Y, Yang X Y. Research on manufacturing method of planing for spur face-gear with 4-axis CNC planer[J]. The International Journal of Advanced Manufacturing Technology, 2016,82(5): 847-858.
7 Yang J H, Zhang D H, Wu B H, et al. A path planning method for error region grinding of aero-engine blades with free-form surface[J]. The International Journal of Advanced Manufacturing Technology, 2015,81(1): 717-728.
8 杨胜群,杨伟群,唐秀梅,等.VERICUT数控加工仿真技术[M].北京:清华大学出版社,2013:103-115.
9 唐清春,尹韶辉,王永强,等.非模态回转轴旋转角的优化方法[J].机械工程学报,2018,54(3):178-185.
Tang Qing-chun, Yin Shao-hui, Wang Yong-qiang, et al. Optimization method of rotation angle of nonmodal rotary axis[J]. Journal of Mechanical Engineering, 2018,54(3):178-185.
10 韦洪新,王智森,程发武.基于控制分布角的球面螺旋加工法研究[J].现代制造工程,2022,501(6):39-42.
Wei Hong-xin, Wang Zhi-sen, Cheng Fa-wu. Study on spherical helix processing method based on control distribution angle[J]. Modern Manufacturing Engineering, 2022,501 (6): 39-42.
[1] Chang-bin DONG,Long-kun LI,Yong-ping LIU,Wang-peng PEI. Numerical simulation and experiment of non-circular gear transmission error and backlash [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 865-873.
[2] Fei WU,Hao-ye NONG,Chen-hao MA. Tool wear prediction method based on particle swarm optimizationlong and short time memory model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 989-997.
[3] Lin SONG,Li-ping WANG,Jun WU,Li-wen GUAN,Zhi-gui LIU. Reliability analysis based on cyber⁃physical system and digital twin [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 439-449.
[4] Guo-long LI,Xiao-hui TAO,Kai XU,Zhe-yu LI. Rapid measurement and identification of position dependent geometric errors of CNC machine tool turntable [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 458-467.
[5] Yun-wei ZHAO,De-xu GENG,Xiao-min LIU,Qi LIU. Implementation and stability on turning with constant radius of pneumatic flexible hexapod robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 472-482.
[6] Chun-zheng DUAN,Fang-yuan ZHANG,Wen-neng KOU,Bin WEI. Martensitic transformation of surface white layer in high speed hard cutting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1575-1583.
[7] QU Xing-tian, ZHAO Yong-bing, LIU Hai-zhong, WANG Xin, YANG Xu, CHEN Hang-de. Modeling and experiment of spatial geometric errors of hybrid serial-parallel machine tool [J]. 吉林大学学报(工学版), 2017, 47(1): 137-144.
[8] ZHANG Peng, KOU Shu-qing, ZHAO Yong, LIN Bao-jun. Ananlsis of three rollers axial knurling process of assembled camshaft [J]. 吉林大学学报(工学版), 2016, 46(6): 1953-1960.
[9] REN Shu-nan, YANG Xiang-dong, WANG Guo-lei, LIU Zhi, CHEN Ken. Base position planning of mobile manipulator for large parts painting [J]. 吉林大学学报(工学版), 2016, 46(6): 1995-2002.
[10] WEI Xiao-hui, LI Xiang, LI Hong-liang, LI Cong, ZHUANG Yuan, YU Hong-mei. Flexible Online MapReduce model and topology protocols supporting large-scale stream data processing [J]. 吉林大学学报(工学版), 2016, 46(4): 1222-1231.
[11] SHEN Zhi-huang, YAO Bin, LU Ru-sheng, FENG Wei, ZHANG Xiang-lei, WANG Meng-meng. Form grinding error analysis of precision screw rotor profiles [J]. 吉林大学学报(工学版), 2016, 46(3): 831-838.
[12] GUO Li-bin, ZHANG Bin, CUI Hai, ZHANG Zhi-hang. Structural parameters of 3D roughness for micro wire electrical discharge machining surface [J]. 吉林大学学报(工学版), 2015, 45(3): 851-856.
[13] DENG Cheng-jiang, HE Xiao-cong, XING Bao-ying, WANG Yu-qi, ZENG Kai, DING Yan-fang. Mechanical properties of self-piercing riveted lap joints in dissimilar metal sheets of aluminum and copper [J]. 吉林大学学报(工学版), 2015, 45(2): 473-480.
[14] HONG Zhao-bin, YANG Zhao-jun, ZHANG Xue-cheng, WANG Bai-chao. Milling simulation analysis of spiral bevel gear based on tooth generating line [J]. 吉林大学学报(工学版), 2013, 43(02): 334-339.
[15] LI Guo-fa, ZHANG Dong-lin, GONG Jin-long, WANG Li-bin. Laser-assisted machining technique for zirconia ceramics [J]. , 2012, (06): 1409-1414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!