Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (2): 520-528.doi: 10.13229/j.cnki.jdxbgxb.20230410

Previous Articles     Next Articles

Analysis of heterogeneity and transferability of factors influencing severity of lane change accidents

Yi-yong PAN(),Yi-wen YOU,Jing-ting WU   

  1. College of Automobile and Traffic Engineering,Nanjing Forestry University,Nanjing 210037,China
  • Received:2023-04-26 Online:2025-02-01 Published:2025-04-16

Abstract:

To investigate the heterogeneity and transferability of factors influencing accident severity, a random parametric Logit model based on mean and variance heterogeneity is constructed to analyze the factors influencing the severity of injury in lane-changing accidents. Divide the severity of accidents into three categories and select 27 potential influencing factors from four aspects: driver characteristics, vehicle characteristics, road characteristics, and road environmental characteristics. Capturing heterogeneity in factors affecting accident severity through mean and variance changes in stochastic parameters,testing the transferability of factors influencing accident severity using log-likelihood ratios,quantifying the impact of factors on accident severity through marginal effects. The results show that there is significant heterogeneity in the factors influencing the severity of accidents in the two groups of lane change and non-lane change. Under the condition that there is no correlation between the various influencing factors, sunlight exposure is a random factor in lane changing accidents, its mean is significantly correlated with the driver's speed change and interstate highways, and its variance is significantly correlated with the complete failure of vehicle disabling functions. Signal control is a random factor in non lane changing accidents, and its mean is correlated with the driver's age as middle-aged, and its variance is correlated with the driver's speed change. There is no transferability and significant difference in the factors influencing the severity of lane change and non-lane change accidents.

Key words: engineering of communications and transportation safety, injury severity, lane change, random parameter Logit with heterogeneity in means and variances, log-likelihood ratio test

CLC Number: 

  • U491

Table 1

Data distribution of lane change accidents and non-lane change accidents"

事故严重程度换道(比例)非换道(比例)
仅财产损失6 086(91.9%)5 438(88.4%)
轻伤事故426(6.4%)617(10%)
重伤事故109(1.7%)89(1.5%)

Table 2

Model parameter estimation results"

因 素constant[AI]换道非换道
参数估计Z-值参数估计Z-值
道路特性5.0915.734.5819.15

道路系统

识别

联邦际公路[BI]0.457 763.21
县际公路[CI]-0.850 02-2.37
交叉口类型T/Y字型交叉[BI]1.617 933.12
限制车速限速30~40 km/h[CI]-0.835 57-2.51
限速40~50 km/h[CI]-0.651 01-2.71
道路环境特性光照条件

日光照射[AI]

(标准差)

1.269 532.84

道路表面

状况

干燥路面[AI]-0.842 44-5.21
车辆特性

碰撞影响

类型

同向碰撞[AI]0.818 45.36
前后碰撞[BI]1.247 546.7

禁用功能

损坏

全部损坏[AI]-3.245 25-11.39
部分损坏[AI]-0.679 23-3.34
车辆类型客车[CI]-1.964 32-6.58
客货两用车[CI]-1.515 51-2.83
皮卡车[CI]-2.058 18-4.91
SUV[CI]-1.778 99-5.29
摩托车[AI]-3.458 56-4.27
道路控制无控制[AI]1.506 075.93
标志控制[AI]1.657 164.69

信号控制[AI]

(标准差)

4.439 742.64
驾驶员特性

是否分心

驾驶

不分心[AI]-0.604 03-3.70.223 742.18
分心[AI]-1.522 42-4.47
驾驶员年龄0~30岁青少年[CI]-0.626 71-2.59
30~50岁中年[CI]-0.716 23-3.27
驾驶员行为

无明显机动

动作[BI]

0.852 154.371.538 179.95
疏忽操作[BI]0.532 313.441.099 069.57
超速/变速[BI]0.836 992.6
均值异质性日光照射:超/变速[BI]0.545 422.38
日光照射:州际公路[CI]-0.332 19-1.68
信号控制:中年驾驶员[AI]-1.216 92-2.42
方差异质性日光照射:禁用功能全部损坏[AI]0.593 943.15
信号控制:超/变速[BI]0.264 832.32

Table 3

Results of log-likelihood ratio tests"

影响因素换道事故非换道事故整体事故换道代入非换道
观察次数(自由度)6 621(21)6 144(18)12 765(22)(21)
对数似然收敛函数值-1 616.59-2 381.53-3 222.795-2 145.88
对数似然初始函数值-7 273.91-6 749.87-3 559.270 9-7 273.91
McFadden20 .777 80.647 20.649 30.705 0
似然比检验结果1 476.091 058.58

Table 4

Results of marginal effects of lane change"

因 素换道事故
仅财产损失轻伤事故重伤事故
道路特性联邦际公路[AI]-0.003 90.005 1-0.001 2
县际公路[CI]0.000 70.000 5-0.001 2
限速30~40 km/h[CI]0.001 00.000 6-0.001 6
道路环境特性日光照射[AI]-0.006 70.004 90.001 8
干燥路面[AI]-0.024 30.018 00.006 3
车辆特性同向碰撞[AI]0.012 9-0.009 4-0.003 4
全部损坏[AI]-0.067 30.050 00.017 3
部分损坏[AI]-0.009 50.007 10.002 4
摩托车[AI]-0.002 50.001 90.000 5
驾驶员特性不分心[AI]-0.016 00.012 00.004 0
分心[AI]-0.002 30.001 70.000 6
0~30岁青少年[CI]0.001 10.000 9-0.002 0
无明显机动动作[BI]-0.004 00.004 90.000 9
疏忽操作[BI]-0.008 10.009 8-0.001 6
超速/变速[BI]-0.001 30.001 6-0.000 3

Table 5

Estimation results of the parameters of the non-lane change accident model"

因 素非换道事故
仅财产损失轻伤事故重伤事故
道路特性T/Y字型交叉[BI]-0.001 30.001 30.000 0
限速40~50 km/h[CI]0.002 20.000 5-0.002 8
车辆特性前后碰撞[BI]-0.089 50.092 4-0.002 9
客车[CI]0.012 00.002 3-0.014 3
客货两用车[CI]0.001 00.000 2-0.001 2
皮卡车[CI]0.002 40.000 5-0.002 9
SUV[CI]0.006 10.001 2-0.007 3
无控制[AI]0.113 8-0.095 4-0.018 4
标志控制[AI]0.005 1-0.004 2-0.000 9

Fig. 1

Marginal effect size of lane change accident"

Fig. 2

Marginal effect size of non lane changing accidents"

1 马景峰, 任刚, 李豪杰, 等. 电动自行车与机动车事故严重性影响因素分析[J]. 交通运输系统工程与信息, 2022, 22(2): 337-348.
Ma Jing-feng, Ren Gang, Li Hao-jie, et al. Analysis of factors influencing the severity of accidents between electric bicycles and motor vehicles[J]. Transportation Systems Engineering and Information,2022, 22(2): 337-348.
2 Wu Q, Chen F, Zhang G, et al. Mixed Logit model-based driver injury severity investigations in single-and multi-vehicle crashes on rural two-lane highways[J]. Accident Analysis & Prevention, 2014, 72: 105-115.
3 Behnood A, Mannering F. Determinants of bicyclist injury severities in bicycle-vehicle crashes: a random parameters approach with heterogeneity in means and variances[J]. Analytic Methods in Accident Research, 2017, 16: 35-47.
4 Yu M, Zheng C, Ma C. Analysis of injury severity of rear-end crashes in work zones: a random parameters approach with heterogeneity in means and variances[J]. Analytic Methods in Accident Research, 2020, 27: 100126.
5 Wang C, Chen F, Zhang Y, et al. Temporal stability of factors affecting injury severity in rear-end and non-rear-end crashes: a random parameter approach with heterogeneity in means and variances[J]. Analytic Methods in Accident Research, 2022, 35: 100219.
6 Zhang P, Wang C, Chen F, et al. A random-parameter negative binomial model for assessing freeway crash frequency by injury severity: daytime versus nighttime[J]. Sustainability, 2022, 14(15): 14159061.
7 Wang C, Chen F, Zhang Y, et al. Spatiotemporal instability analysis of injury severities in truck-involved and non-truck-involved crashes[J]. Analytic Methods in Accident Research, 2022, 34: 100214.
8 Yan X, He J, Zhang C, et al. Spatiotemporal instability analysis considering unobserved heterogeneity of crash-injury severities in adverse weather[J]. Analytic Methods in Accident Research, 2021, 32: 100182.
9 潘义勇, 吴静婷, 缪炫烨. 老年驾驶员事故严重程度影响因素时间不稳定性分析[J].吉林大学学报: 工学版, 2024, 54(10): 2819-2826.
Pan Yi-yong, Wu Jing-ting, Miao Xuan-ye. Temporal instability analysis of factors affecting accident severity of elderly drivers[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(10): 2819-2826.
10 Adanu E K, Lidbe A, Tedla E, et al. Factors associated with driver injury severity of lane changing crashes involving younger and older drivers[J]. Accident Analysis & Prevention, 2021, 149: 105867.
11 Li Y, Song L, Fan W D. Day-of-the-week variations and temporal instability of factors influencing pedestrian injury severity in pedestrian-vehicle crashes: a random parameters logit approach with heterogeneity in means and variances[J]. Analytic Methods in Accident Research, 2021, 29: 100152.
12 Albdairi N S S, Behnood A, Hernandez S. Temporal stability of driver injury severities in animal-vehicle collisions: a random parameters with heterogeneity in means (and variances) approach[J]. Analytic Methods in Accident Research, 2020, 26: 100120.
[1] Hong-zhi WANG,Ming-xuan SONG,Chao CHENG,Dong-xuan XIE. Vehicle distance warning method based on improved YOLOv4⁃tiny algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 741-748.
[2] Wei-hua ZHANG,Jia-ming LIU,Li-peng XIE,Heng DING. Lane⁃changing model of autonomous vehicle in weaving area of expressway in intelligent and connected mixed environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 469-477.
[3] Gang LIU,Qun FAN,Xu YANG,Hong-bin REN. Dynamic control for trajectory tracking of variable speed lane change in autonomous vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3729-3739.
[4] Yi-yong PAN,Jing-ting WU,Xuan-ye Miao. Temporal instability analysis of factors affecting injury severities of elderly drivers [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2819-2826.
[5] Heng-yan PAN,Wen-hui ZHANG,Ting-ting LIANG,Zhi-peng PENG,Wei GAO,Yong-gang WANG. Inducement analysis of taxi drivers' traffic accidents based on MIMIC and machine learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 457-467.
[6] Shou-tao LI,Rui WANG,Jing-chun XU,De-jun WANG,Yan-tao TIAN,Ding-li YU. A vehicle collision avoidance control method based on model predictive composite control [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 738-746.
[7] Lu WANG,Yu⁃wen LIU,Hong CHEN. Cross-wind environment vehicle driving feature at canyon bridge and tunnel connection segment [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 736-748.
[8] TAN Li-dong, LIU Dan, LI Wen-jun. Design of bionic compound eye array for traffic accident scene panorama based on fly compound eye [J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744.
[9] LI Xian-sheng, MENG Xiang-yu, ZHENG Xue-lian, CHENG Zhu-qing, REN Yuan-yuan. Dynamic characteristics of liquid sloshing in partially-filled tank [J]. 吉林大学学报(工学版), 2017, 47(3): 737-743.
[10] XU Jin, CHEN Wei, ZHOU Jia, LUO Xiao, SHAO Yi-ming. Correlation between steering and driver's workload [J]. 吉林大学学报(工学版), 2017, 47(2): 438-445.
[11] GUO Ying-shi, FU Rui, ZHAO Kai, MA Yong, YUAN Wei. Evaluation and test of real-time identification models of driver's lane change intention [J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844.
[12] WANG Zhe, YANG Bai-ting, LIU Xin, LIU Qun, SONG Xian-min. Discriminant analysis of driving decisions based on fuzzy clustering [J]. 吉林大学学报(工学版), 2015, 45(5): 1414-1419.
[13] FU Rui, MA Yong, GUO Ying-shi, YUAN Wei, SUN Hao. Lane change warning rules based on real vehicle test data [J]. 吉林大学学报(工学版), 2015, 45(2): 379-388.
[14] ZHENG Xue-lian, LI Xian-sheng, REN Yuan-yuan, WANG Yu-ning, YANG Meng. Equivalent mechanical model for liquid sloshing in partially-filled tank vehicle [J]. 吉林大学学报(工学版), 2013, 43(06): 1488-1493.
[15] GUO Lie, HUANG Xiao-hui, GE Ping-shu, ZHANG Guang-xi, YUE Ming. Lane changing trajectory tracking control for intelligent vehicle on curved road based on backstepping [J]. 吉林大学学报(工学版), 2013, 43(02): 323-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!