Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1749-1755.doi: 10.13229/j.cnki.jdxbgxb20200508

Previous Articles    

Design and performance of internal air supply conduit for dehumidification in main cables of suspension bridges

Wei CHEN1(),Tian-bao WAN2,Zhong-bin WANG2,Xuan LI1,Rui-li SHEN1()   

  1. 1.School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.China Railway Major Bridge Reconnaissance & Design Institute Co. ,Ltd. ,Wuhan 430056,China
  • Received:2020-07-06 Online:2021-09-01 Published:2021-09-16
  • Contact: Rui-li SHEN E-mail:782851112@qq.com;rlshen@163.com

Abstract:

In order to meet the requirements for use inside the main cables of suspension bridges, a dry air supply conduit structure with good compressive and extension properties is designed, and the compressive properties and air supply resistance characteristics of the air supply conduit are studied by numerical simulation and experimental testing. The results show that the composite air supply conduit composed of the 304L stainless steel spring with an inner diameter of 50 mm, wire diameter of 5 mm, pitch of 15~20 mm and the corrugated pipe can withstand the radial compressive stress of 13.4 MPa, thus meeting the compressive strength requirements. The air delivery resistance coefficient of the composite conduit composed of the spring and the corrugated pipe is significantly smaller than that of the pure spring conduit, with a maximum reduction of 46.4%, which means that the composite air supply conduit can effectively reduce the pressure loss in the process of dry air delivery.

Key words: bridge engineering, the dehumidification system of the main cable, the internal ventilation, the air supply conduit, the radial compressive properties, resistance coefficient

CLC Number: 

  • U443.8

Fig.1

General layout of main cable dehumidification system of Longtan river crossing channel bridgein main cable"

Fig.2

Workflow of dehumidification system inside main cable"

Fig.3

Humidity variation curves of main cable"

Fig.4

Structural diagram of composite air supply conduit"

Fig.5

Finite element models"

Table 1

Numerical calculation results of spring compression"

簧丝线径/mm螺距/mm最大变形量/mm应力/MPa稳定系数
3105.7810121.59
3157.9012101.17
5151.314216.75
5201.725665.11

Fig.6

Test loading process"

Table 2

Working condition table of spring compression test"

试件编号簧丝线径/mm螺距/mm荷载/kN
1310150
2315150
3515150
4515200
5520150
6520200

Fig.7

Test results of 5 mm spring wire diameter test pieces"

Fig.8

Test results of air supply conduits resistance"

1 白伦华, 沈锐利, 张兴标, 等. 自锚式悬索桥的面内稳定性[J]. 吉林大学学报: 工学版, 2019, 49(5): 1500-1508.
Bai Lun-hua, Shen Rui-li, Zhang Xing-biao, et al. In-plane stability of self-anchored suspension bridge[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1500-1508.
2 王保群, 张强勇, 张凯, 等. 自锚式斜拉-悬吊协作体系桥梁动力性能[J]. 吉林大学学报: 工学版, 2009, 39(3): 686-690.
Wang Bao-qun, Zhang Qiang-yong, Zhang Kai, et al. Dynamic characteristics for self-anchored cablestayed suspension bridges[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(3): 686-690.
3 Shoichi S, Kazuhiko F. Corrosion protection of suspension bridge cables[J]. Construction of Civil Engineering Structures, 2003(7): 35-37, 63.
4 Shunichi N, Keita S. Experimental study on repair methods of corroded bridge cables[J]. Journal of Bridge Engineering, 2012, 17(4): 720-727.
5 陈小雨, 唐茂林. 悬索桥主缆钢丝腐蚀速率计算方法[J]. 公路交通科技, 2019, 36(2): 43-49.
Chen Xiao-yu, Tang Mao-lin. A method for calculating corrosion rate of main cable steel wires of suspension bridge[J]. Journal of Highway and Transportation Research and Development, 2019, 36(2): 43-49.
6 魏子杰, 彭福胜, 缪小平, 等. 悬索桥主缆通风除湿数值计算及实验研究[J]. 工程热物理学报, 2016, 37(12): 2495-2501.
Wei Zi-jie, Peng Fu-sheng, Miao Xiao-ping, et al. Numerical calculation and experiment on the dehumidification system for main cable of suspension bridge [J]. Journal of Engineering Thermophysics, 2016, 37(12): 2495-2501.
7 王鹏宇. 重庆几江长江大桥主桥设计[J]. 桥梁建设, 2017, 47(2): 72-77.
Wang Peng-yu. Design of main bridge of Jijiang Changjiang river bridge in chongqing[J]. Bridge Construction, 2017, 47(2): 72-77.
8 王凤存, 丁亚辉, 徐翾玄, 等. 清水河大桥主缆除湿系统安装施工技术[J]. 公路, 2018, 63(5): 120-124.
Wang Feng-cun, Ding Ya-hui, Xu Xuan-xuan, et al. Installation and construction technology of main cable dehumidification system of Qingshuihe Bridge[J]. Highway, 2018, 63(5): 120-124.
9 叶觉明, 李荣庆. 现代悬索桥主缆防护现状与展望[J]. 桥梁建设, 2009(6): 67-71.
Ye Jue-ming, Li Rong-qing. State-of-the-art and prospecting of main cable protection of modern suspension bridge[J]. Bridge Construction, 2009(6): 67-71.
10 李海. 润扬大桥悬索桥主缆除湿系统设计与施工[J]. 桥梁建设, 2005(1): 39-41.
Li Hai. Design and construction of dehumidification system for main cables of suspension bridge of Runyang Bridge[J]. Bridge Construction, 2005(1): 39-41.
11 Miao R S, Shen R L, Wang L, et al. Theoretical and numerical studies of the slip resistance of main cable clamp composed of an upper and a lower part[J]. Advances in Structural Engineering, 2020, 24(4): 691-705.
12 沈锐利, 陈巍, 陈鑫, 等. 一种高承压高伸长管道结构[P]. 中国: CN210088192U, 2020-02-18.
13 苑磊. 山区公路大管径钢波纹管涵洞受力特征分析与工程应用[D]. 重庆: 重庆交通大学土木工程学院, 2016.
Yuan Lei. Force characteristics of mountain highway and engineering application of large diameter steel bellows Culvert[D]. Chongqing: School of Civil Engineering, Chongqing Jiaotong University, 2016.
14 Elie P, Benoît T, Marc L. Irradiation-assisted stress corrosion cracking susceptibility and mechanical properties related to irradiation-induced microstructures of 304L austenitic stainless steel[J]. Journal of Nuclear Materials, 2020, 528: 151880.
15 彭关中, 缪小平, 贾代勇, 等. 悬索桥主缆通风除湿系统的设计[J]. 深圳大学学报: 理工版, 2013, 30(2): 179-185.
Peng Guan-zhong, Miao Xiao-ping, Jia Dai-yong, et al. Design research on dehumidification system for main cable of suspension bridge[J]. Journal of Shenzhen University(Science & Engineering), 2013, 30(2): 179-185.
[1] Kai GAO,Gang LIU. Effective strength improvement of global critical strength branch and bound method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 597-603.
[2] Ya-feng GONG,Jia-xiang SONG,Guo-jin TAN,Hai-peng BI,Yang LIU,Cheng-xin SHAN. Multi⁃vehicle bridge weigh⁃in⁃motion algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 583-596.
[3] Qing-wen KONG,Guo-jin TAN,Long-lin WANG,Yong WANG,Zhi-gang WEI,Han-bing LIU. Analysis of free vibration characteristics of cracked box girder bridge based on finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 225-232.
[4] Hua CHEN,Yao-jia CHEN,Bin XIE,Peng-kai WANG,Lang-ni DENG. Interface failure mechanism and bonding strength calculation of CFRP tendons bonded anchorage system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1698-1708.
[5] Ya-feng GONG,Jia-xiang SONG,Hai-peng BI,Guo-jin TAN,Guo-hai HU,Si-yuan LIN. Static test and finite element analysis of scale model of fabricated box culvert [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1728-1738.
[6] Hao GAO,Jun-jie WANG,Hui-jie LIU,Jian-ming WANG. Design criterion and applied devices for controlled seismic behavior of continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1718-1727.
[7] Qian-hui PU,Jing-wen LIU,Gang-yun ZHAO,Meng YAN,Xiao-bin LI. Theoretical analysis of bearing capacity of concrete eccentric compressive column reinforced by HTRCS [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 606-612.
[8] Yun-long ZHANG,Yang-yang GUO,Jing WANG,Dong LIANG. Natural frequency and mode of vibration of steel⁃concrete composite beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 581-588.
[9] Bo-xin WANG,Hai-tao YANG,Qing WANG,Xin GAO,Xiao-xu CHEN. Bridge vibration signal optimization filtering method based on improved CEEMD⁃multi⁃scale permutation entropy analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 216-226.
[10] Miao ZHANG,Yong-jiu QIAN,Fang ZHANG,Shou-qin ZHU. Experimental analysis of spatial force performance of concrete-reinforced stone arch bridge based on enlarged section method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 210-215.
[11] Yi JIA,Ren-da ZHAO,Yong-bao WANG,Fu-hai LI. Sensitivity analysis of viscous damper parameters for multi⁃span and long⁃unit continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1871-1883.
[12] Chun-ling ZHONG,Dong LIANG,Yun-long ZHANG,Jing WANG. Calculation of natural vibration frequency of simply supported beam strengthened by external prestressing [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1884-1890.
[13] Lun-hua BAI,Rui-li SHEN,Xing-biao ZHANG,Lu WANG. In-plane stability of self-anchored suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1500-1508.
[14] Jin⁃gang ZHAO,Ming ZHANG,Yu⁃lin ZHAN,Ming⁃zhi XIE. Damage criterion of reinforced concrete pier based on plastic strain energy density [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1124-1133.
[15] Shi⁃cheng WAN,Qiao HUANG,Jian GUAN,Zhao⁃yuan GUO. Strengthening of continuous steel⁃concrete composite beams in negative moment region using prestressed carbon fiber⁃reinforced polymer plates [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1114-1123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!