Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (4): 970-980.doi: 10.13229/j.cnki.jdxbgxb20200882

Previous Articles    

Vibration characteristics analysis and structural optimization of straw deep bury and returning machine

Wen-ying GAO(),Jing LIN(),Bao-fa LI,Wei WANG,Shi-yan GU   

  1. College of Engineering,Shenyang Agricultural University,Shenyang 110866,China
  • Received:2020-11-18 Online:2022-04-01 Published:2022-04-20
  • Contact: Jing LIN E-mail:gaoneu_sy@163.com;synydxlj69@163.com

Abstract:

To solving the problems of severe vibration and poor stability of maize straw deep bury and returning machine during the field operation, the vibration characteristics and influence rules of the machine are studied. In addition, increasing its low-order natural frequency is taken as the goal to optimize the structure of the implement and improve its operating effect. First, the natural frequencies of the machines are extracted through finite element modal analysis. Secondly, through the field testing, the amplitude statistical characteristics and power spectrum of the eight test points on the machines are obtained to analyze their impact on the vibration characteristics of the whole machine. Finally, based on the ISIGHT multidisciplinary software platform, the sequence quadratic programming method is used to optimize the parameters of the main structure of the implements, avoid the main external excitation frequency and optimize the structure of the implement. The research shows that machine vibration is mainly determined by forward speed, its own structure, and the conditions of soil and ground surface. When the implements operate, resonance has occurred at the tail of the frame, the covering device and the suppression wheel have a certain adsorption effect on vibration. Through the analysis on power spectrum, the main frequency that affects the vibration of the implement is concentrated at 8~16 Hz, which is close to the first-order and the second-order natural frequencies. The optimized first-order natural frequency of the main structure of the whole machine is increased to 20.348 Hz, which effectively avoids the resonance. The field experiment shows that the optimized implements can reduces vibration and noise during operation, and the effect of the operation is good, which provides a certain theoretical reference for the design optimization of the maize straw deep bury and returning machine.

Key words: agricultural mechanization, straw deep bury and returning machine, vibration, frequency, structural optimization

CLC Number: 

  • S222.4

Table 1

Technology parameters of straw deep bury and returning machine"

项 目技术参数
配套动力/kW45
外形尺寸(长×宽×高)/mm2790×1490×1560
行数2
适应行距/cm55~60
工作幅宽/mm1200
开沟装置类型螺旋式开沟
覆土器类型螺旋式覆土器
秸秆粉碎装置转速/(r?min-11620
开沟装置转速/(r?min-1270
最大开沟深度/mm300
开沟宽度/mm350
整机质量/kg1050

Fig.1

General structure of straw deep bury and returning machine"

Table 2

Material characteristic parameters of machine"

材料弹性模量/GPa泊松比

密度/

(kg·m-3

屈服强度/GPa
45钢2100.317850355
Q2352070.297850220

Fig.2

Finite element model of straw deep bury and"

Table 3

Mesh quality inspection of finite element model"

检查项目标准极差值结果
雅克比>0.60.61合格
长宽比<5.04.4合格
扭曲度<60°47.21合格
翘曲<5°0.96合格
三角形百分比<0.050.015合格

Fig.3

Modal shape of the machine"

Fig.4

Flow chart of modal test"

Fig.5

Mode shape of modal test"

Table 4

Comparisons between calculation and testing modal"

阶数有限元模态试验模态相对误差/%
固有频率阵型固有频率阵型
114.720Y轴扭转13.824Y轴扭转6.48
217.147Z轴扭转17.763Z轴扭转3.47
336.736X轴扭转36.285X轴扭转1.24
445.248X轴弯曲+局部振型45.306X轴弯曲+局部振型0.13
547.524Z轴弯曲+局部振型47.951Z轴弯曲+局部振型0.89
655.910X轴弯曲+局部振型56.277X轴弯曲+局部振型0.65
760.744X轴弯曲+局部振型59.483X轴弯曲+局部振型2.12
872.910X轴弯曲+局部振型74.032X轴弯曲+局部振型1.52

Table 5

Results of finite element constraint modal analysis"

阶 数固有频率/Hz主振型
115.374Y轴弯曲
217.028Z轴扭转
334.287X轴扭转
442.753X轴弯曲+局部振型
546.307弯扭组合
652.438Z轴弯曲+局部振型
763.826X轴弯曲+局部振型
875.602X轴弯曲+局部振型

Fig.6

Vibration system model of straw bury and returning machine"

Fig.7

Vibration test in field"

Fig.8

Vibration signals of measuring points"

Table 6

Amplitude distribution of vibration signals at test points"

统计值测试点
测试点1测试点2测试点3测试点4测试点5测试点6测试点7测试点8
有效值16.51836.05849.91018.60832.69338.86640.46212.268
最大值108.127220.164304.167122.486262.394270.530189.75090.459
最小值-104.026-218.275-286.818-112.652-248.461-249.670-207.638-114.673

Fig.9

Power spectral density of different measuring points"

Fig.10

Structure diagram of machine after optimization"

Table 7

Results of modal analysis before and after optimization"

阶数优化前优化后

固有频

率/Hz

阵 型固有频率/Hz阵 型
115.374Y轴弯曲20.348Y轴扭转
217.028Z轴扭转32.657Z轴扭转
334.287X轴扭转42.741X轴弯曲+局部振型
442.753X轴弯曲+局部振型48.622Z轴弯曲+局部振型
546.307弯扭组合56.413Z轴弯曲+局部振型
652.438Z轴弯曲+局部振型59.288X轴弯曲+局部振型
763.826X轴弯曲+局部振型62.588X轴弯曲+局部振型
875.602X轴弯曲+局部振型73.221X轴弯曲+局部振型

Table 8

Amplitude distribution of vibration signals at test points after optimization"

统计值测试点
测试点1测试点2测试点3测试点4测试点5测试点6测试点7测试点8
有效值15.65128.48536.64216.29424.38726.73930.82310.461
最大值90.749157.357231.662102.475190.341210.269124.63076.865
最小值-108.362-142.628-216.854-97.832-186.946-178.957-137.582-90.352

Fig.11

Amplitude comparison of test points before and after optimization"

1 田国成, 王钰, 孙路, 等. 秸秆焚烧对土壤有机质和氮磷钾含量的影响[J]. 生态学报, 2016, 36(2): 387-393.
Tian Guo-cheng, Wang Yu, Sun Lu, et al. Effects of wheat straw burning on content of soil organic matter, nitrogen, phosphorus and potassium[J]. Acta Ecologica Sinica, 2016, 36(2): 387-393.
2 Chen J, Zheng M, Pang D, et al. Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat[J]. Journal of Integrative Agriculture, 2017, 16(8): 1708-1719.
3 Pureta V L, Pereira E I P, Wittwer R, et al. Improvement of soil structure through organic crop management conservation tillage and grass-clover ley[J]. Soil and Tillage Research, 2018, 180: 1-9.
4 刘卉, 周清明, 黎娟. 秸秆还田对土壤改良及作物生长影响的研究进展[J]. 中国农学报, 2017, 33(32): 53-57.
Liu Hui, Zhou Qing-ming, Li Juan. Effect of straw returning on soil improvement and crop grows: research progress[J]. Chinese Agricultural Science Bulletin, 2017, 33(32): 53-57.
5 Yang H S, Xu M M, Koide R T, et al. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system[J]. Journal of the Science of Food and Agriculture, 2016, 96(4): 1141-1149.
6 王金武, 唐汉, 王金峰. 东北地区作物秸秆资源综合利用现状与发展分析[J]. 农业机械学报, 2017, 48(5) :1-21.
Wang Jin-wu, Tang Han, Wang Jin-feng. Comprehensive utilization status and development analysis of crop straw resource in Northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 1-21.
7 韩瑞芸, 陈哲, 杨世琦. 秸秆还田对土壤氮磷及水土的影响研究[J]. 中国农学通报, 2016, 32(9): 148-154.
Han Rui-yun, Chen Zhe, Yang Shi-qi. Effect of straw-returning on nitrogen and phosphorus and water of soil[J]. Chinese Agricultural Science Bulletin, 2016, 32(9): 148-154.
8 宋健鹏, 林静, 马铁, 等. 旋转锹式玉米秸秆深埋还田机的设计[J]. 农机化研究, 2018, 40(2): 95-99.
Song Jian-peng, Lin Jing, Ma Tie, et al. Design and test rotating spade type maize straw returning root deep machine[J]. Journal of Agricultural Mechanization Research, 2018, 40(2): 95-99.
9 王金武, 王奇, 唐汉, 等. 水稻秸秆深埋整秆还田装置设计与试验[J]. 农业机械学报, 2015, 46(9): 112-117.
Wang Jin-wu, Wang Qi, Tang Han, et al. Design and experiment of rice straw deep buried and wholestraw returning device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 112-117.
10 李真. 玉米整秆深埋还田试验[J]. 山西农业科学, 2014, 42(4): 349-352.
Li Zhen. Experiment of whole maize straw returned to deep furrow and buried under ridge[J]. Journal of Shanxi Agricultural Sciences, 2014, 42(4): 349-352.
11 王川, 邵陆寿, 施六林, 等. 秸秆深埋保护性耕作复合机具设计[J]. 中国农机化学报, 2014, 35(1): 117-120.
Wang Chuan, Shao Lu-shou, Shi Liu-lin, et al. Design of compound equipment with the deep straw and conservation tillage[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(1): 117-120.
12 李永磊, 宋建农, 康小军, 等. 双辊秸秆还田旋耕机试验[J]. 农业机械学报, 2013, 44(6): 45-49.
Li Yong-lei, Song Jian-nong, Kang Xiao-jun, et al. Experiment on twin-roller cultivator for straw returning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 45-49.
13 章志强,何进,李洪文,等. 可调节式秸秆粉碎抛撒还田机设计与试验[J]. 农业机械学报, 2017, 48(9): 76-87.
Zhang Zhi-qiang, He Jin, Li Hong-wen, et al. Design and experiment on straw chopper cum spreader with adjustable spreading device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 76-87.
14 王瑞丽, 杨鹏, Rabiu F J, 等. 秸秆深埋还田开沟灭茬机设计与试验[J]. 农业工程学报, 2017, 33(5): 40-47.
Wang Rui-li, Yang Peng, Rabiu F J, et al. Designand experiment of combine machine for deep furrowing, stubble, chopping, returning and burying of chopped straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5): 40-47.
15 林静, 马铁, 李宝筏. 1JHL-2型秸秆深埋还田机设计与试验[J]. 农业工程学报, 2017, 33(20): 32-40.
Lin Jing, Ma Tie, Li Bao-fa. Design of 1 JHL-2 typestraw deep bury and returning machine[J]. Transactionsof the Chinese Society of Agricultural Engineering, 2017, 33(20): 32-40.
16 林静, 马铁, 高文英, 等. 秸秆深埋还田机螺旋开沟装置的设计与试验[J] .沈阳农业大学学报,2018, 49(1): 41-48.
Lin Jing, Ma Tie, Gao Wen-ying, et al. Design and experiment of spiral milling cutter device of straw deep bury and returning machine [J]. Journal of Shenyang Agricultural University, 2018, 49(1): 41-48.
17 姚艳春, 赵雪彦, 杜岳峰, 等. 考虑质量时变的收获机械工作模态分析与试验[J]. 农业工程学报, 2018, 34(9): 83- 94.
Yao Yan-chun, Zhao Xue-yan, Du Yue-feng, et al. Operating modal analysis and test of harvester induced by mass-varying process[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 83-94.
18 李耀明, 孙朋朋, 庞靖, 等. 联合收获机底盘机架有限元模态分析与试验[J]. 农业工程学报, 2013, 29(3): 38-46.
Li Yao-ming, Sun Peng-peng, Pang Jing, et al. Finite element mode analysis and experiment of combine harvester chassis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 38-46.
19 徐立章, 李耀明, 孙朋朋, 等. 履带式全喂入水稻联合收获机振动测试与分析[J]. 农业工程学报, 2014, 30(8): 49-55.
Xu Li-zhang, Li Yao-ming, Sun Peng-peng, et al. Vibration measurement and analysis of tracked-whole feeding rice combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(8): 49-55.
20 姚艳春, 宋正河, 杜岳峰, 等. 玉米收获机车架应力及模态数值模拟焊点模型优选[J]. 农业工程学报, 2016, 32(24): 50-58.
Yao Yan-chun, Song Zheng-he, Du Yue-feng, et al. Optimum seeking of spot weld model on numerical simulation of stress and modal analysis for corn combine harvester frame[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 50-58.
21 王奇, 朱龙图, 李名伟, 等. 指夹式玉米免耕精密播种机振动特性及对排种性能的影响[J]. 农业工程学报, 2019, 35(9): 9-18.
Wang Qi, Zhu Long-tu, Li Ming-wei, et al. Vibration characteristics of corn no-tillage fillage finger-type precision planter and its effect on seeding performance [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 9-18.
22 张佳喜, 杨程, 张丽, 等. 玉米起茬机构的强度及振动特性分析与试验[J]. 农业工程学报, 2018, 34(12): 72-78.
Zhang Jia-xi, Yang Cheng, Zhang Li, et al. Analysis and experiment on strength and vibration characteristics of corn stubble plucking mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 72-78.
23 高志朋, 徐立章, 李耀明, 等. 履带式稻麦联合收获机田间收获工况下振动测试与分析[J]. 农业工程学报, 2017, 33(20): 48-55.
Gao Zhi-peng, Xu Li-zhang, Li Yao-ming, et al. Vibr-ation measure and analysis of crawler-type rice and wheat combine harvester in field harvesting condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 48-55.
24 姚艳春, 杜岳峰, 朱忠祥, 等. 基于模态的玉米收获机车架振动特性分析与优化[J]. 农业工程学报, 2015, 31(19): 46-53.
Yao Yan-chun, Du Yue-feng, Zhu Zhong-xiang, et al. Vibration characteristics analysis and optimization of corn combine harvester frame using modal analysis method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19): 46-53.
25 高文英, 林静, 李宝筏, 等. 玉米秸秆深埋还田机螺旋开沟装置参数优化与试验[J]. 农业机械学报, 2018, 49(9): 45-54.
Gao Wen-ying, Lin Jing, Li Bao-fa, et al. Parameter optimization and experiment for spiral type opener device of maize straw deep bury and returning machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 45-54.
26 刘习军, 贾启芬, 张素侠. 振动理论及工程应用[M]. 北京:机械工业出版社, 2017.
27 张晓冬,李成华,李建桥,等. 铲式玉米精密播种机振动特性模型建立与试验[J]. 农业机械学报, 2014, 45(2): 88-93.
Zhang Xiao-dong, Li Cheng-hua, Li Jian-qiao, et, al. Mathematic vibration model of spade punch planter of maize [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 88-93.
[1] Jie LI,Tao CHEN,Wen-cui GUO,Qi ZHAO. Pseudo excitation method of vehicle non-stationary random vibration in space domain and its application [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 738-744.
[2] Xue-mei LI,Chun-yang WANG,Xue-lian LIU,Da XIE. Time delay estimation of linear frequency-modulated continuous-wave lidar signals via SESTH [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 950-958.
[3] Jian-po LI,Mei-lin LI,Tao YANG,Peng XUE. Low-complexity Wiener filter channel estimation algorithm in massive MIMO-OFDM system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 211-218.
[4] Chang-jun ZHONG,Zhong-bin WANG,Chen-yang LIU. Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2068-2078.
[5] Rong-qing LIANG,Bo ZHONG,He-wei MENG,Zhi-min SUN,Za KAN. Design of 4QJ⁃3 type pickup header of silage oat [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1887-1896.
[6] Hong-wei ZHAO,Zi-jian ZHANG,Jiao LI,Yuan ZHANG,Huang-shui HU,Xue-bai ZANG. Bi⁃direction segmented anti⁃collision algorithm based on query tree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1830-1837.
[7] Jia-cheng YUAN,Chang WANG,Kun HE,Xing-yu WAN,Qing-xi LIAO. Effect of components mass ratio under sieve on cleaning system performance for rape combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1897-1907.
[8] Hai-bin WEI,Xiang-yan WANG,Fu-yu WANG,Yong ZHANG. Mechanical properties and micro analysis of AC-25 asphalt mixture based on vibration forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1269-1276.
[9] Jian YANG,Qi XIA,Hai-chao ZHOU,Guo-lin WANG. Noise reduction mechanism of truck radial tire based on modified carcass string contour design [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1198-1203.
[10] Wei LI,Huai-liang ZHANG,Wei QU. Design method of hydraulic straight pipe under random vibration [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1222-1229.
[11] Ping YU,Te MU,Li-hui ZHU,Zi-ye ZHOU,Jie SONG. Nonlinear dynamic analysis and stability control of drilling tool conveying mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 820-830.
[12] Qing-wen KONG,Guo-jin TAN,Long-lin WANG,Yong WANG,Zhi-gang WEI,Han-bing LIU. Analysis of free vibration characteristics of cracked box girder bridge based on finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 225-232.
[13] Ming-wei HU,Hong-guang WANG,Xin-an PAN. Global structural optimization design of collaborative robots using orthogonal design [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 370-378.
[14] Fang-wu MA,Li HAN,Liang WU,Jin-hang LI,Long-fan YANG. Damping optimization of heavy⁃loaded anti⁃vibration platform based on genetic algorithm and particle swarm algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1608-1616.
[15] Hao-tian WU,Rui-feng GUO,A-zhen PENG,Pin WANG. A low power scheduling algorithm based on constant bandwidth server considering reliability [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1802-1808.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!