吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1385-1391.doi: 10.7964/jdxbgxb201405026

Previous Articles     Next Articles

Improved operational pattern-PID based control of ORP in cobalt removal process using arsenic salt

WU Tie-bin1,2,YANG Chun-hua1,LI Yong-gang1,ZHU Hong-qiu1 ,GUI Wei-hua1,WANG Ya-lin1   

  1. 1.School of Information Science &Engineering, Central South University, Changsha 410083,China;
    2.Department of Electrical and Mechanical Engineering, Hu′nan Institute of Humanities Science and Technology, Loudi 417000,China
  • Received:2013-05-06 Online:2014-09-01 Published:2014-09-01

Abstract: To solve the problem of stability control of Oxidation-Reduction Potential (ORP), which is caused by time variation, nonlinearity and time-delay in the process of cobalt removal using arsenic salt, an improved operational pattern based PID parameter tuning method is put forward. In order to improve the reliability and speed of operational pattern matching, first, an improved fuzzy C-mean clustering algorithm for operational pattern clustering is presented. Then, a two-step search method is used to match the similar operational patterns. Finally, since the system parameters of the cobalt removal process vary with time, to improve the reliability of the reused operational pattern solutions, which are PID parameters, different weighting values are assigned to the operational solutions in different times when the operational pattern is reused. A real industrial cobalt removal process control results show that the proposed method can effectively reduce the fluctuation of ORP degree and deal with complicated changing conditions.

Key words: automatic control technology, cobalt removal process using arsenic salt, oxidation-reduction potential, operational pattern

CLC Number: 

  • TP273
[1] Bckman O, stvold T. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes[J]. Hydrometallurgy, 2000, 54(2/3): 65-78.
[2] Stole-Hansen K, Wregget D A, Gowanlock D, et al. Model based analysis and control of a cementation process[J].Computers and Chemical Engineering, 1997, 21(Sup.): 1099-1103.
[3] Wang Ling-yun, Gui Wei-hua, Kok L T,et al. Optimal control problems arising in the zinc sulphate electrolyte purification process[J]. Journal of Global Optimization,2009,5(4): 705-718.
[4] Bohn Hinrich L. Redox potentials[J]. Soil Science, 1970, 112(1):39-43.
[5] Fugleberg S, Jarvinen A, Yllo E. Recent development in solution purification at Outokumpu Zinc Plant, Kokkola[C]∥Proceedings International Symposium-World Zinc '1993, Hobart, Melbourne, 1993:241-247.
[6] 刘金琨.先进PID控制MATLAB仿真[M].3版.北京:电子工业出版社, 2011.
[7] Mohammad Shamsuzzoha. A new approach for PID controller tuning from closed-loop setpoint experiment[J]. Chemical Engineering Transactions, 2011, 24: 445-450.
[8] 王介生,高宪文.基于改进混合蛙跳算法的电渣重熔过程多变量PID控制器设计[J].控制与决策, 2011, 26(11): 1731-1734.Wang Jie-sheng,Gao Xian-wen. Design of multi-variable PID controller of electroslag remelting process based on improved shuffled frog leaping algorithm[J].Control and Decision, 2011, 26(11): 1731-1734.
[9] 杨智,陈志堂, 范正平,等.基于改进粒子群优化算法的PID控制器整定[J].控制理论与应用,2010, 27(10): 1345-1352.Yang Zhi,Chen Zhi-tang,Fan Zheng-ping,et al. A tuning of PID controller based on improved particle swarm optimization[J].Control Theory and Applications,2010, 27(10): 1345-1352.
[10] 潘天红,李士勇.基于即时学习的非线性系统自适应PID控制[J].控制理论与应用, 2009, 26(10): 1180-1184.Pan Tian-hong, Li Shi-yong. Adaptive PID control for nonlinear systems based on lazy learning[J]. Control Theory and Applications, 2009, 26(10): 1180-1184.
[11] 晏静文,侯忠生.学习增强型PID控制系统的收敛性分析[J].控制理论与应用, 2010, 27(6): 761-766.Yan Jing-wen, Hou Zhong-sheng. Convergence analysis of learning-enhanced PID control system[J]. Control Theory and Applications, 2010, 27(6): 761-766.
[12] 耿增显, 柴天佑.基于案例推理的浮选过程智能优化设定[J].东北大学学报:自然科学版,2008, 29(6): 761-764.Geng Zeng-xian, Chai Tian-you. Intelligently optimal index setting for flotation process by CBR[J].Journal of Northeastern University (Natural Science),2008, 29(6): 761-764.
[13] 袁平,王福利,毛志忠.基于案例推理的电弧炉终点预报[J].东北大学学报:自然科学版, 2011, 32(12): 1673-1676.Yuan Ping,Wang Fu-li,Mao Zhi-zhong. CBR based endpoint prediction of EAF[J].Journal of Northeastern University(Natural Science), 2011, 32(12): 1673-1676.
[14] 桂卫华, 阳春华, 李勇刚,等.基于数据驱动的铜闪速熔炼过程操作模式优化及应用[J]. 自动化学报, 2009, 35(5): 718-723.Gui Wei-hua, Yang Chun-hua, Li Yong-gang, et al. Data-driven operational-pattern optimization for copper flash smelting process[J]. Acta Automatica Sinica, 2009, 35(5): 718-723.
[15] Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
[16] Lin Chun-fu, Wang De-sheng. Fuzzy support vector machines[J].IEEE Transactions on Neural Networks, 2002, 13(2): 465-467.
[1] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[2] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[3] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[4] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556-1562.
[5] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[6] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control [J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[7] WANG Lin, WANG Hong-guang, SONG Yi-feng, PAN Xin-an, ZHANG Hong-zhi. Behavior planning of a suspension insulator cleaning robot for power transmission lines [J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[8] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[9] ZHU Feng, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, ZHANG Shi-tao. Gyro signal processing based on strong tracking Kalman filter [J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[10] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[11] FENG Jian-xin. Recursive robust filtering for uncertain systems with delayed measurements [J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[12] XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[13] HU Yun-feng, GU Wan-li, LIANG Yu, DU Le, YU Shu-you, CHEN Hong. Start-stop control of hybrid vehicle based on nonlinear method [J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
[14] SHEN Shuai, ZHANG Bao, LI Xian-tao, ZHU Feng, JIN Chao-qiong. Acceleration feedback control based on tracking differentiator [J]. 吉林大学学报(工学版), 2017, 47(4): 1217-1224.
[15] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!