Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 464-471.doi: 10.13229/j.cnki.jdxbgxb20181083

Previous Articles    

Trajectory tracking of robotic manipulators based on fast nonsingular terminal sliding mode

Wei WANG1,2(),Jian-ting ZHAO1,2,Kuan-rong HU3,Yong-cang GUO4   

  1. 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
    2.Beijing Key Laboratory of UAV Autonomous Control Technology,Beijing Institute of Technology,Beijing 100081,China
    3.Research and Design Institute,Northwest Industrial Group,Xi'an 710299,China
    4.Quality Department,Northwest Industrial Group,Xi'an 710299,China
  • Received:2018-10-27 Online:2020-03-01 Published:2020-03-08

Abstract:

To drive the robotic manipulator tracking the desired trajectory, a novel modern control method based on the nonsingular terminal sliding mode is designed in this paper. Combining the traditional fast terminal sliding mode and the nonsingular terminal sliding mode, the proposed control method possesses the characteristics of rapidity, nonsingularity, finite-time convergence and strong robustness. The chattering from sliding mode controller can also be suppressed effectively. Here, the mathematical model of robotic manipulator structure which can be simplified as a 2-DOF rigid linkage system is built, firstly. Next, a robust controller is designed. Then, the Lyapunov function is constructed to verify its stability. Finally, detailed simulations with some comparisons demonstrate the effectiveness of the proposed method.

Key words: automatic control technology, manipulator control, terminal sliding mode control theory, nonsingularity, finite-time convergence

CLC Number: 

  • TP273

Fig.1

Planar 2-DOF link model"

Fig.2

Saturation function images under different parameter δ conditions"

Table 1

Sliding mode and controller design parameters"

滑模及控制器βabε
FTSM7.5535
NTSM7.5535
FNTSM7.5535

Fig.3

Two-pole angular position tracking"

Fig.7

Two-pole control input torque"

Fig.6

Two-pole angular velocity tracking error"

Fig.4

Two-pole angular velocity tracking"

Fig.5

Two-pole angular position tracking error"

Table 2

Control parameters"

Caseβλα
17.50150100
23.75150100
37.507550

Fig.8

Comparing simulation results of three cases"

1 Kreutz K. On manipulator control by exact linearization[J]. IEEE Transactions on Automatic Control, 1989, 34(7): 763-767.
2 He W, Dong Y, Sun C. Adaptive neural impedance control of a robotic manipulator with input saturation[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2016, 46(3): 334-344.
3 Poignet P. and Gautier M. Nonlinear model predictive control of a robot manipulator[C]∥Proceedings of the 6th International Workshop on Advanced Motion Control Proceedings, Nagoya, Japan, 2000: 401-406.
4 李英, 朱明超, 李元春. 可重构机械臂模糊神经补偿控制[J]. 吉林大学学报: 工学版, 2007, 37(1): 206-211.
Li Ying, Zhu Ming-chao, Li Yuan-chun. Neurofuzzy compensation control for reconfigurable manipulator[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(1): 206-211.
5 Abdulridha H M, Hassoun Z A. Control design of robotic manipulator based on quantum neural network[J]. Journal of Dynamic Systems Measurement and control, 2018, 140(6): 61-71.
6 Liu M. Decentralized control of robot manipulators: nonlinear and adaptive approaches[J]. Automatic Control IEEE Transactions on, 1999, 44(2): 357-363.
7 张友安, 糜玉林, 吕凤琳, 等. 双连杆柔性臂自适应模糊滑模控制[J]. 吉林大学学报: 工学版, 2005, 35(5): 520-525.
Zhang You-an, Mi Yu-lin, Feng-lin Lyv, et al. Adaptive fuzzy sliding mode control for two-link flexible manipulator[J]. Journal of Jilin University (Engineering and Technology Edition), 2005, 35(5): 520-525.
8 Feng Y, Yu X, Man Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167.
9 Youcef-Toumi K, Asada H. The design and control of manipulators with decoupled and configuration-invariant inertia tensors[C]∥American Control Conference, Seattle, WA, USA, 1986: 811-817.
10 Su Y, Dong S, Lu R, et al. Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators[J]. IEEE Transactions on Robotics, 2006, 22(1): 202-207.
11 Tomizuka M, Horowitz R. Model reference adaptive control of mechanical manipulators[J]. IFAC Proceedings Volumes, 1983, 16(9): 27-32.
12 He W, Chen Y, Yin Z. Adaptive neural network control of an uncertain robot with full-state constraints[J]. IEEE Transactions on Cybernetics, 2017, 46(3): 620-629.
13 Sun C, He W, Hong J. Neural network control of a flexible robotic manipulator using the lumped spring-mass model[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(8): 1863-1874.
14 Yu X, Man Z. Fast terminal sliding-mode control design for nonlinear dynamical systems[J]. IEEE Transactions on Circuits & Systems I Fundamental Theory & Applications, 2002, 49(2): 261-264.
15 Feng Y, Yu X, Man Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167.
16 Chen S Y, Lin F J. Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 636-643.
17 Shtessel Y, Taleb M, Plestan F. A novel adaptive-gain supertwisting sliding mode controller: methodology and application[J]. Automatica, 2012, 48(5):759-769.
18 Zhang M, Tian P, Chen X, et al. Ground target tracking guidance law for fixed-wing unmanned aerial vehicle: a search and capture approach[J]. Journal of Dynamic Systems Measurement and Control, 2017, 139(10): 45-50.
19 He S, Lin D, Wang J. Chattering-free adaptive fast convergent terminal sliding mode controllers for position tracking of robotic manipulators[J]. Proceedings of The Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 2015, 230(4): 514-526.
20 Moreno J A, Osorio M. Strict lyapunov functions for the super-twisting algorithm[J]. IEEE Transactions on Automatic Control, 2012, 57(4): 1035-1040.
[1] Fu LIU,Yi AN,Bo DONG,Yuan-chun LI. Decentralized energy guaranteed cost decentralized optimal control of reconfigurable robots based on ADP [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 342-350.
[2] Xing-tian QU,Xue-xu WANG,Hui-chao SUN,Kun ZHANG,Long-wei YAN,Hong-yi WANG. Fuzzy self⁃adaptive PID control for fused deposition modeling 3D printer heating system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 77-83.
[3] Miao-miao MA,Jun-jun PAN,Xiang-jie LIU. Model predictive load frequency control of microgrid with electrical vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1644-1652.
[4] Shu⁃you YU,Lei TAN,Wu⁃yang WANG,Hong CHEN. Control of active four wheel steering vehicle based ontriple⁃step method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 934-942.
[5] Hai⁃ying WEN,Xiang REN,Wei⁃liang XU,Ming CONG,Wen⁃long QIN,Shu⁃hai HU. Bionic design and experimental test of temporomandibular joint for masticatory robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 943-952.
[6] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[7] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[8] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[9] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556-1562.
[10] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[11] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control [J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[12] WANG Lin, WANG Hong-guang, SONG Yi-feng, PAN Xin-an, ZHANG Hong-zhi. Behavior planning of a suspension insulator cleaning robot for power transmission lines [J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[13] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[14] ZHU Feng, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, ZHANG Shi-tao. Gyro signal processing based on strong tracking Kalman filter [J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[15] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!