Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (10): 2399-2404.doi: 10.13229/j.cnki.jdxbgxb20210561

Previous Articles    

Digital image fuzzy enhancement algorithm based on convolutional neural network

Zhi-jun GUO(),Shuai LIU()   

  1. College of Information Science and Engineering,Hunan Normal University,Changsha 410081,China
  • Received:2021-06-21 Online:2022-10-01 Published:2022-11-11
  • Contact: Shuai LIU E-mail:sdf1354945@126.com;lxjj201@126.com

Abstract:

In order to solve the problems of gray information loss and poor image effect caused by edge blur of digital image, a digital image fuzzy enhancement algorithm based on convolution neural network is proposed. At the same time, restricted contrast balanced derivative image, gamma conversion derivative image, logarithmic conversion derivative image and two-channel enhancement derivative image are constructed under different lighting environments, so as to slightly adjust the variance of image pixels and enhance the expression of detail information. Finally, the convolution neural network is used to filter the transition points in the image, so as to adjust the contrast, average brightness and pixel variance in the image, and the fuzzy enhancement of the digital image was realized. Experimental results show that the proposed method can enhance the effect of digital image blur better, and is not easy to be affected by the environment.

Key words: convolutional neural network, digital image, fuzzy enhancement, fuzzy membership degree, contrast, transit point

CLC Number: 

  • TP92

Fig.1

Experimental image"

Fig.2

Analysis of fuzzy enhancement effect of sample digital image"

1 傅博, 王瑞子, 王丽妍, 等. 基于深度卷积神经网络的水下偏色图像增强方法[J]. 吉林大学学报:理学版, 2021, 59(4): 891-899.
Fu Bo, Wang Rui-zi, Wang Li-yan, et al. Enhancement method of underwater color cast image based on deep convolutional neural network[J]. Journal of Jilin University (Science Edition), 2021, 59(4): 891-899.
2 张慧, 常莉红, 马旭, 等. 一种基于曲波变换与引导滤波增强的图像融合方法[J]. 吉林大学学报:理学版, 2020, 58(1): 113-119.
Zhang Hui, Chang Li-hong, MA Xu, et al. An image fusion method based on curvelet transform and guided filter enhancement[J]. Journal of Jilin University (Science Edition), 2020, 58(1): 113-119.
3 冯相辉. 一种改进的同态滤波图像增强算法[J]. 重庆邮电大学学报:自然科学版, 2020, 32(1): 138-145.
Feng Xiang-hui. An improved homomorphic filtering image enhancement algorithm[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(1): 138-145.
4 韩梦妍, 李良荣, 蒋凯. 基于光照图估计的Retinex低照度图像增强算法[J]. 计算机工程, 2021, 47(10): 201-206.
Han Meng-yan, Li Liang-rong, Jiang Kai. Retinex low-illumination image enhancement algorithm based on light image estimation[J]. Computer Engineering, 2021, 47(10): 201-206.
5 刘文, 杨梅芳, 聂江天, 等. 基于局部生成对抗网络的水上低照度图像增强[J]. 计算机工程, 2021, 47(5): 16-23.
Liu Wen, Yang Mei-fang, Nie Jiang-tian, et al. Low-light maritime image enhancement based on local generative adversarial network[J]. Computer Engineering, 2021, 47(5): 16-23.
6 房楚尧, 周知, 赵家培, 等. 基于再模糊理论的航拍图像质量检测方法[J]. 计算机工程与应用, 2019, 55(7): 199-206.
Fang Chu-yao, Zhou Zhi, Zhao Jia-pei, et al. Detection method of aerial image quality based on re-blur theory[J]. Computer Engineering and Applications, 2019, 55(7): 199-206.
7 曹锦纲, 李金华, 郑顾平. 基于生成式对抗网络的道路交通模糊图像增强[J].智能系统学报, 2020, 15(3): 491-498.
Cao Jin-gang, Li Jin-hua, Zheng Gu-ping. Enhancement of blurred road-traffic images based on generative adversarial network[J]. CAAI Transactions on Intelligent Systems, 2020, 15(3): 491-498.
8 于天河, 李昱祚, 兰朝凤. 基于顶帽底帽变换的仿生图像增强算法[J].计算机应用, 2020, 40(5): 1440-1445.
Yu Tian-he, Li Yu-zuo, Lan Chao-feng. Bionic image enhancement algorithm based on top-bottom hat transformation[J]. Journal of Computer Applications, 2020, 40(5): 1440-1445.
9 侯向丹, 郑梦敬, 刘洪普, 等. 基于剪切波和改进Pal-King的医学图像增强算法研究[J]. 激光与光电子学进展, 2019, 56(3): 123-129.
Hou Xiang-dan, Zheng Meng-jing, Liu Hong-pu, et al. Medical image enhancement algorithm based on shearlet domain and improve Pal-King algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(3): 123-129.
10 吴婷. 基于非均匀有序直方图和锐化的红外图像增强[J]. 半导体光电, 2020, 41(1): 135-140.
Wu Ting. Infrared image enhancement based on non-uniform ordered histogram and sharpening[J]. Semiconductor Optoelectronics, 2020, 41(1): 135-140.
11 刘永娜, 王利绒. 基于激光传感器的模糊图像增强研究[J]. 激光杂志, 2020, 41(3): 122-125.
Liu Yong-na, Wang Li-rong. Research on fuzzy image enhancement based on laser sensor[J]. Laser Journal, 2020, 41(3): 122-125.
12 陈晓文, 刘光帅, 刘望华, 等. 结合LoG边缘检测和增强局部相位量化的模糊图像识别[J]. 计算机科学, 2020, 47(12): 197-204.
Chen Xiao-wen, Liu Guang-shuai, Liu Wang-hua. Blurred image recognition based on log edge detection and enhanced local phase quantization[J]. Computer Science, 2020, 47(12): 197-204.
13 林森, 刘世本, 唐延东. 多输入融合对抗网络的水下图像增强[J].红外与激光工程, 2020, 49(5): 217-225.
Lin Sen, Liu Shi-ben, Tang Yan-dong. Multi-input fusion adversarial network for underwater image enhancement[J]. Infrared and Laser Engineering, 2020, 49(5): 217-225.
14 王成, 张艳超. 像素级自适应融合的夜间图像增强[J]. 液晶与显示, 2019, 34(9): 888-896.
Wang Cheng, Zhang Yan-chao. Night image enhancement based on pixel level adaptive image fusion[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(9): 888-896.
15 王红茹, 张弓, 卢道华, 等. 基于背景光估计与颜色修正的水下图像增强[J]. 计算机工程, 2020, 46(10): 253-258.
Wang Hong-ru, Zhang Gong, Lu Dao-hua, et al. Underwater image enhancement based on background light estimation and color correction[J]. Computer Engineering, 2020, 46(10): 253-258.
16 刘明珠, 苏桃宇, 王依宁. 压扩多尺度Retinex图像增强算法研究[J]. 哈尔滨理工大学学报, 2020, 25(5): 93-99.
Liu Ming-zhu, Su Tao-yu, Wang Yi-ning. Research on compressed multiscale retinex image enhancement algorithms[J]. Journal of Harbin University of Science and Technology, 2020, 25(5): 93-99.
17 孙启隆, 于萍, 司振惠, 等. 基于暗通道的沙尘图像增强算法[J]. 吉林大学学报:理学版, 2021, 59(5): 1179-1187.
Sun Qi-long, Yu Ping, Si Zhen-hui, et al. Dust image enhancement algorithm based on dark channel[J]. Journal of Jilin University(Science Edition), 2021, 59(5): 1179-1187.
[1] Xiao-ying LI,Ming YANG,Rui QUAN,Bao-hua TAN. Unbalanced text classification method based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1889-1895.
[2] Xuan-jing SHEN,Xue-feng ZHANG,Yu WANG,Yu-bo JIN. Multi⁃focus image fusion algorithm based on pixel⁃level convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1857-1864.
[3] Hong-wei ZHAO,Jian-rong ZHANG,Jun-ping ZHU,Hai LI. Image classification framework based on contrastive self⁃supervised learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1850-1856.
[4] Huai-jiang YANG,Er-shuai WANG,Yong-xin SUI,Feng YAN,Yue ZHOU. Simplified residual structure and fast deep residual networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1413-1421.
[5] Ming-hua GAO,Can YANG. Traffic target detection method based on improved convolution neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1353-1361.
[6] Xian-tong LI,Wei QUAN,Hua WANG,Peng-cheng SUN,Peng-jin AN,Yong-xing MAN. Route travel time prediction on deep learning model through spatiotemporal features [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 557-563.
[7] Xue-zhi WANG,Qing-liang LI,Wen-hui LI. Spatio⁃temporal model of soil moisture prediction integrated with transfer learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 675-683.
[8] Xiang-jun LI,Jie-ying TU,Zhi-bin ZHAO. Validity classification of melting curve based on multi⁃scale fusion convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 633-639.
[9] Long ZHANG,Tian-peng XU,Chao-bing WANG,Jian-yu YI,Can-zhuang ZHEN. Gearbox fault diagnosis baed on convolutional gated recurrent network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 368-376.
[10] Wen-zhi GAO,Yan-jun WANG,Xin-wei WANG,Pan ZHANG,Yong LI,Yang DONG. Real⁃time diagnosis for misfire fault of diesel engine based on convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 417-424.
[11] Liang DUAN,Chun-yuan SONG,Chao LIU,Wei WEI,Cheng-ji LYU. State recognition in bearing temperature of high-speed train based on machine learning algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 53-62.
[12] Hui ZHONG,Heng KANG,Ying-da LYU,Zhen-jian LI,Hong LI,Ruo-chuan OUYANG. Image manipulation localization algorithm based on channel attention convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1838-1844.
[13] De-xing WANG,Ruo-you WU,Hong-chun YUAN,Peng GONG,Yue WANG. Underwater image restoration based on multi-scale attention fusion and convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1396-1404.
[14] Hou⁃jie LI,Fa⁃sheng WANG,Jian⁃jun HE,Yu ZHOU,Wei LI,Yu⁃xuan DOU. Pseudo sample regularization Faster R⁃CNN for traffic sign detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1251-1260.
[15] Jing-he LI,Shu-jun MENG. Fast imaging for concrete quality defect detection using acoustic tomography [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 965-976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!