Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (7): 1719-1732.doi: 10.13229/j.cnki.jdxbgxb20210138

Previous Articles    

Tea plantation remote sensing extraction based on random forest feature selection

Bin WANG1,2(),Bing-hui HE1(),Na LIN3,Wei WANG3,Tian-yang LI1   

  1. 1.College of Resources and Environment,Southwest University,Chongqing 400715,China
    2.Chongqing Geomatics and Remote Sensing Center,Chongqing 401147,China
    3.School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China
  • Received:2021-02-22 Online:2022-07-01 Published:2022-08-08
  • Contact: Bing-hui HE E-mail:79603730@qq.com;hebinghui@swu.edu.cn

Abstract:

Due to the scattered spatial distribution, irregular shape and close to the spectral characteristics of surrounding vegetation, it is a very challenging work to extract tea plantations from satellite images. In order to solve this problem, a technical route of tea plantations extraction based on Random Forest feature selection method and Landsat-8 OLI image was proposed. In this study, Anji County in Zhejiang Province was selected as the research area. The spring, autumn and winter landsat-8 OLI images were used as the main data source. The importance evaluation, ranking and feature selection of initial features were carried out using Random Forest. The single season initial feature set, single season optimal feature set and multi-seasonal optimal feature set were designed, and nine groups of tea garden extraction experiments were carried out. The results show that multi-seasonal optimal feature set, which combines multi-seasonal information and feature selection advantages, has the best performance (PA = 87.5%; OA = 92.4%; Kappa = 0.897). The technical route is reliable and practical for extracting tea plantations with scattered spatial distribution and irregular shape, and achieves relatively high accuracy while feature dimensionality reduces.

Key words: agricultural engineering, tea plantations, random forest, feature selection, remote sensing, extraction

CLC Number: 

  • F307.1

Fig.1

Location of Anji county"

Fig.2

Methodological flow"

Table 1

Feature sets design"

特征集子特征集包含特征特征数量

单季节

初始

(1)光谱特征集光谱波段(波段2‐7)6
(2)GLCM纹理特征集6光谱波段×8个GLCM纹理特征+6个光谱波段54
(3)变差函数纹理特征集6光谱波段×4个变差纹理特征+6个光谱波段30
(4)伪交叉变差函数纹理特征集15对波段组合×4个伪交叉变差纹理特征+ 6光谱波段66
(5)植被指数特征集3个植被指数特征+6个光谱特征9

单季节

优选

(1)GLCM纹理优选特征集GLCM特征集前1/413
(2)变差函数纹理优选特征集

变差函数纹理特征集前

1/4

7
(3)伪交叉变差函数纹理优选特征集伪交叉变差函数纹理特征集前1/416

多季节

优选

(1)多季节光谱特征集3个季节的光谱特征18
(2)多季节综合特征集3个季节的综合特征(9×9窗口)423
(3)多季节优选特征集多季节综合特征集前1/5特征85

Fig.3

Statistical chart of initial characteristics and feature optimization of three seasons"

Fig.4

Comparison of texture characteristics among tea Plantation, woodland and nursery"

Fig.5

Spectral characteristic curve of tea plantation"

Fig.6

Interpretation marks of tea plantation in OLI image"

Table 2

Textural metrics"

纹理类别纹理指标公式指标描述说 明
GLCM均值Mean=i=0quantkj=0quantkp(i,j)×i纹理规则程度ij是像元在图像中的行列坐标, pij)是灰度联合概率矩阵,quantk 是灰度共生矩阵的阶数。
方差Variance=i=0quantkj=0quantkp(i,j)×(i-Mean)2像元灰度值与均值的偏差量
对比度Contrast=i=0quantkj=0quantkp(i,j)×(i-j)2纹理清晰度
同质性Homogeneity=i=0quantkj=0quantkp(i,j)×11+(i+j)2纹理均匀性
非相似性Dissmilarity=i=0quantkj=0quantkp(i,j)×i-j纹理对比度
角二阶矩ASM=i=0quantkj=0quantkp(i,j)2灰度分布均匀性
Entropy=-i=0quantkj=0quantkp(i,j)×lnp(i,j)纹理复杂度统计量
相关性Correlation=i=0quantkj=0quantk(i-Mean)×(j-Mean)×p(i,j)2Variance纹理灰度线性关系和方向性统计量
地统计学变差函数gk(h)=12n(h)i=1n(h){dnk(xi)-dnk(xi+h)}2图像局部方差和相关性统计量dn是像元x的灰度值, nh)是相距为h的像元对的数量,k是波段序号。
伪交叉变差函数γjk(h)=12n(h)i=1n(h){dnj(xi)-dnk(xi+h)}2两个波段之间的联合变差函数

Fig.7

Experiment on the parameter setting of number of random forest classification trees"

Table 3

Pixel number of training and validation sample data"

土地覆盖类型训练集样本 像素数/个

验证集样本

像素数/个

茶园62302259
水体573942
森林107473095
建筑用地1032683
裸土689348
耕地1281658

Table 4

Classification accuracies for different feature sets"

类别单季节初始特征集单季节优选特征集
PA/%OM/%OA/%Kappa系数PA/%OM/%OA/%Kappa系数
冬季光谱特征集71.328.789.50.857----
GLCM纹理特征集71.428.687.60.83075.724.389.60.858
变差函数纹理特征集69.230.885.90.80770.729.386.70.819
伪交叉变差函数纹理特征集65.234.887.00.82373.526.589.30.855
植被指数特征集72.127.989.70.860----
秋季光谱特征集67.632.486.20.812----
GLCM 纹理特征集77.222.888.20.83975.924.184.60.791
变差函数纹理特征集79.220.886.90.82272.028.080.20.732
伪交叉变差函数纹理特征集79.520.587.80.83478.421.687.40.830
植被指数特征集72.827.287.10.825----
春季光谱特征集61.538.583.10.769----
GLCM 纹理特征集74.125.985.80.80566.633.481.50.745
变差函数纹理特征集77.422.685.10.79564.835.278.20.700
伪交叉变差函数纹理特征集77.422.688.30.84162.737.381.50.748
植被指数特征集63.236.882.50.761----

Fig.8

Relative importance of features with respect to textural feature sets (window size:9×9 pixels)"

Table 5

Classification accuracy of multi-seasonal optimal feature set"

类 别PA/%OM/%OA/%Kappa
多季节光谱特征集78.421.691.90.890
多季节综合特征集86.113.999.30.868
多季节特征选择特征集87.512.592.40.897

Fig.9

Extracted tea plantations"

Fig.10

Relative importance of features with respect to multi-seasonal optimal feature set"

Fig.11

Pixel number of tea plantations misclassified in initial feature sets with the best performance and multi-seasonal feature selection feature set"

Table 6

Accuracy comparison between proposed method and other methods"

PA/%OM/%OA/%
随机森林87.512.592.4
U‐Net网络86.113.990.1
最大似然法76.523.575.8
支持向量机83.616.489.3
1 Liu Y L, Feng Y H, Zhao Z, et al. Socioeconomic drivers of forest loss and fragmentation: a comparison between different land use planning schemes and policy implications[J]. Land Use Policy, 2016, 54: 58-68.
2 Su S L, Zhou X C, Wan C, et al. Land use changes to cash crop plantations: crop types, multilevel determinants and policy implications[J]. Land Use Policy, 2016, 50: 379-389.
3 徐乔,张霄,余绍淮,等. 综合多特征的极化SAR图像随机森林分类算法[J]. 遥感学报, 2019, 23(4): 685-694.
Xu Qiao, Zhang Xiao, Yu Shao-huai, et al. Multi-feature-based classification method using random forest and superpixels for polarimetric SAR images[J]. Journal of Remote Sensing, 2019, 23(4): 685-694.
4 王娜,李强子,杜鑫,等. 单变量特征选择的苏北地区主要农作物遥感识别[J]. 遥感学报, 2017, 21(4): 519-530.
Wang Na, Li Qiang-zi, Du Xin, et al. Identification of main crops based on the univariate feature selection in Subei[J]. Journal of Remote Sensing, 2017, 21(4): 519-530.
5 耿仁方,付波霖,蔡江涛,等. 基于无人机影像和面向对象随机森林算法的岩溶湿地植被识别方法研究[J]. 地球信息科学学报, 2019, 21(8): 1295-1306.
Geng Ren-fang, Fu Bo-lin, Cai Jiang-tao, et al. Object-based karst wetland vegetation classification method using unmanned aerial vehicle images and random forest algorithm[J]. Journal of Geo-Information Science, 2019, 21(8): 1295-1306.
6 董强,刘晶红,周前非. 用于遥感图像拼接的改进SURF算法[J]. 吉林大学学报: 工学版, 2017, 47(5): 1644-1652.
Dong Qiang, Liu Jin-hong, Zhou Qian-fei. Improved SURF algorithm used in image mosaic[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(5): 1644-1652.
7 刘凯,龚辉,曹晶晶,等. 基于多类型无人机数据的红树林遥感分类对比[J]. 热带地理, 2019, 39(4): 492-501.
Liu Kai, Gong Hui, Cao Jing-jing, et al. Comparison of mangrove remote sensing classification based on multi-type UAV data[J]. Tropical Geography, 2019, 39(4): 492-501.
8 陈媛媛,郑加柱,魏浩翰,等. 基于不同特征的随机森林极化SAR图像分类[J]. 计算机系统应用, 2019, 28(8): 183-189.
Chen Yuan-yuan, Zheng Jia-zhu, Wei Hao-han, et al. Tidal flat classification based on random forest model using different features of polarimetric SAR[J]. Computer Systems & Applications, 2019, 28(8): 183-189.
9 许章华,黄旭影,林璐,等. 基于Fisher判别分析与随机森林的马尾松毛虫害检测[J]. 光谱学与光谱分析, 2018, 38(9): 2888-2896.
Xu Zhang-hua, Huang Xu-ying, Lin Lu, et al. Dendrolimus punctatus walker damage detection based on fisher discriminant analysis and random forest[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2888-2896.
10 陈妍,宋豫秦,王伟. 基于随机森林回归的草场植被盖度反演模型研究——以新疆阿勒泰地区布尔津县为例[J]. 生态学报, 2018, 38(7): 2384-2394.
Chen Yan, Song Yu-qin, Wang Wei. Grassland vegetation cover inversion model based on random forest regression: a case study in Burqin county, Altay, Xinjiang uygur autonomous region[J]. Acta Ecologica Sinica, 2018, 38(7): 2384-2394.
11 詹国旗,杨国东,王凤艳,等. 基于特征空间优化的随机森林算法在GF-2影像湿地分类中的研究[J]. 地球信息科学学报, 2018, 20(10): 1520-1528.
Zhang Guo-qi, Yang Guo-dong, Wang Feng-yan, et al. The random forest classification of wetland from GF-2 imagery based on the optimized feature space[J]. Journal of Geo-information Science, 2018, 20(10): 1520-1528.
12 Chen T, Trinder J, Niu R Q. Object-oriented landslide mapping using ZY-3 satellite imagery, random forest and mathematical morphology, for the Three-Gorges Reservoir, China[J]. Remote Sensing, 2017, 9: 333.
13 Zhu J, Pan Z W, Wang H, et al. An improved multi-temporal and multi-feature tea plantation identification method using Sentinel-2 imagery[J]. Sensors(Basel, Switzerland), 2019, 19(9): 2087.
14 马玥,姜琦刚,孟治国,等. 基于随机森林算法的农耕区土地利用分类研究[J]. 农业机械学报, 2016, 47(1): 297-303.
Ma Yue, Jiang Qi-gang, Meng Zhi-guo, et al. Classification of land use in farming area based on random forest algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 297-303.
15 Zhou F Q, Zhang A N. Optimal subset selection of time-Series MODIS images and sample data transfer with random forests for supervised classification modelling[J]. Sensors, 2016, 16: 1783.
16 Whiteside T, Bartolo R. Mapping aquatic vegetation in a tropical wetland using high spatial resolution multispectral satellite imagery[J]. Remote Sensing, 2015, 7: 11664-11694.
17 杨艳魁,陈芸芝,吴波,等. 基于高分二号影像结合纹理信息的茶园提取[J]. 江苏农业科学, 2019, 47(2): 210-214.
Yang Yan-kui, Chen Yun-zhi, Wu Bo, et al. Extraction of tea plantation image based on GF-2 image and texture information[J]. Jiangsu Agricultural Sciences, 2019, 47(2): 210-214.
18 Gao T, Zhu J J, Zheng X, et al. Mapping spatial distribution of larch plantations from multi-seasonal Landsat-8 OLI imagery and multi-scale textures using random forests[J]. Remote Sensing, 2015, 7: 1702-1720.
19 Wang B, Li J, Jin X F, et al. Mapping tea plantations from multi-seasonal Landsat-8 OLI imageries using a random forest classifier[J]. Journal of the Indian Society of Remote Sensing, 2019, 47: 1315-1329.
20 范敏,韩琪,王芬,等. 基于多层次特征表示的场景图像分类算法[J]. 吉林大学学报: 工学版, 2017, 47(6): 1909-1917.
Fan Min, Han Qi, Wang Fen, et al. Scene image categorization algorithm based on multi-level features representation[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(6): 1909-1917.
21 郑国忠.地方政府在安吉白茶产业集群发展中的作用研究[D]. 杭州: 浙江农林大学经济管理学院, 2018.
Zheng Guo-zhong. Study on the role of local government in the development of Anji white tea industry cluster[D]. Hangzhou: College of Economics and Management,Zhejiang Agriculture & Forestry University, 2018.
22 李光华,李俊清,张亮,等. 一种融合蚁群算法和随机森林的特征选择方法[J]. 计算机科学, 2019, 46(11): 212-215.
Li Guang-hua, Li Jun-qing, Zhang Liang, et al. Feature selection method based on ant colony optimization and random forest[J]. Computer Science, 2019, 46(11): 212-215.
23 李平湘,刘致曲,杨杰,等. 利用随机森林回归进行极化SAR土壤水分反演[J]. 武汉大学学报:信息科学版, 2019, 44(3): 405-412.
Li Ping-xiang, Liu Zhi-qu, Yang Jie, et al. Soil moisture retrieval of winter wheat fields based on random forest regression using quad-polarimetric SAR images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 405-412.
[1] Sheng-sheng WANG,Lin-yan JIANG,Yong-bo YANG. Transfer learning of medical image segmentation based on optimal transport feature selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1626-1638.
[2] Ming LIU,Yu-hang YANG,Song-lin ZOU,Zhi-cheng XIAO,Yong-gang ZHANG. Application of enhanced edge detection image algorithm in multi-book recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 891-896.
[3] Yi-na ZHOU,Hong-li DONG,Yong ZHANG,Jing-yi LU. Feature extraction method of pipeline signals based on VMD de-noising and dispersion entropy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 959-969.
[4] Duan-yang GENG,Yan-cheng SUN,Xiao-dong MU,Guo-dong ZHANG,Hui-xin JIANG,Jun-ke ZHU. Simulation test and optimization of grain breakage of silage maize based on differential roller [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 693-702.
[5] Chang-kai WEN,Bin XIE,Zheng-he SONG,Jian-gang HAN,Qian-wen YANG. Design method of tractor durability accelerated structure test [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 703-715.
[6] Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309.
[7] Guo-fa LI,Yan-bo WANG,Jia-long HE,Ji-li WANG. Research progress and development trend of health assessment of electromechanical equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 267-279.
[8] Hong-kui XU,Tong-tong JIANG,Xin LI,Bin-xiang JIANG,Yong-lei WANG. LTE uplink interference analysis combined with denoising autoencoder and extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 195-203.
[9] Gui-xia LIU,Zhi-yao PEI,Jia-zhi SONG. Prediction of protein-ATP binding site based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 187-194.
[10] Guo-wei WANG,Qing-hui ZHU,Hai-ye YU,Dong-yan HUANG. Silage traceability system based on digital agricultural machinery equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 242-252.
[11] Fang LIANG,De-cheng WANG,Yong YOU,Guang-hui WANG,Yu-bing WANG,Xiao-ming ZHANG,Jin-kui FENG. Design and experiment of root-cutter with fertilization and reseeding compound remediation machine for grassland [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 231-241.
[12] Yuan-hong LIU,Pan-pan GUO,Yan-sheng ZHANG,Xin LI. Feature extraction of sparse graph preserving projection based on Riemannian manifold [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2268-2279.
[13] Xin-yan WANG,Quan JIANG,Feng LYU,Zheng-yang YI. Rollover stability of zero turning radius lawn mower based on parametric model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1908-1918.
[14] Xiong-fei LI,Jia-jing WU,Xiao-li ZHANG,Ze-yu WANG,Yun-cong FENG. Remote sensing image fusion algorithm based on relative total variation structure extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1775-1784.
[15] Hui ZHONG,Heng KANG,Ying-da LYU,Zhen-jian LI,Hong LI,Ruo-chuan OUYANG. Image manipulation localization algorithm based on channel attention convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1838-1844.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!