Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (1): 210-219.doi: 10.13229/j.cnki.jdxbgxb20210516

Previous Articles    

Evaluation of influence of gradation segregation on pavement moisture damage under action of dynamic and static water environment

Xu CHEN1,2(),Chao-fei CAO1,2,Jing SHANG1,2,Ming-xing HUANG1,3,Chang-fa AI1,2,Dong-ya Ren1,2()   

  1. 1.School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.Highway Engineering Key Laboratory of Sichuan Province,Chengdu 610031,China
    3.Sichuan Suiguangsuixi Expressway Co. ,Ltd. ,Suining 629000,China
  • Received:2021-06-08 Online:2023-01-01 Published:2023-07-23
  • Contact: Dong-ya Ren E-mail:chenxuyouxiang@my.swjtu.edu.cn;dongyaren@swjtu.edu.cn

Abstract:

In view of the deficiency of the existing research on the effect of gradation segregation on the water damage resistance of asphalt mixture, the effects of various water environment effects and different segregation degrees on the water loss resistance of asphalt mixture were studied based on the moisture sensitivity tester(MIST). The results show that: the weakening order of water environment on splitting strength and marshall stability is "static immersion + MIST (long-term + short-term effect)" > "MIST (short-term effect)" > "static immersion (long-term effect)"; after the occurrence of gradation segregation, the order of splitting strength and Marshall stability is HC (heavy segregation of coarse aggregate) < LC (mild segregation of coarse aggregate) < D (no segregation) < LF (mild segregation of fine aggregate) < HF (heavy segregation of fine aggregate); the effect of hydrodynamic environment aggravates the effect of gradation segregation on splitting strength and Marshall stability, and the effect of gradation segregation on water permeability coefficient is much greater than that of water environment.

Key words: road engineering, gradation segregation, moisture damage, moisture induced sensitivity tester, long-term effect, short-term effect, evaluation index

CLC Number: 

  • U414

Table 1

Main technical indexes of 70# asphalt"

试验项目技术要求测试结果
针入度(25 ℃,100 g,5 s)/0.1 mm60~8065
延度(5 cm/min,15 ℃)/cm≥100>100
软化点(环球法)/℃≥4650
石蜡含量(蒸馏法)/%<2.21.3
闪点(COC)/℃≥260320
60 ℃动力黏度/(Pa·s)160220
TFOT(163 ℃,5 h)质量损失率/%±0.8-0.02

Table 2

NAPA determines the technical index of segregation"

离析等级级配变化/%沥青含量变化/%空隙率变化/%
轻度级配离析1个筛孔>50.3~0.752.5~4.5
重度级配离析4个筛孔>15>1.3>6.5

Table 3

Grading and volume parameters of asphalt mixture"

离析等级不同筛孔孔径(mm)下的通过率/%油石比/%空隙率/%
26.5191613.29.54.752.361.180.60.30.150.075
HF10010097837460492315.5117.55.55.51.6
LF1009386716141251814.097.04.54.42.8
D1009281675544371611.085.54.04.13.7
LC100917763483020.5149.075.53.53.65.5
HC10084655136292596.554.02.52.99.1

Fig.1

Moisture induced sensitivity tester"

Fig.2

HM-9111 model asphalt mixture seepage instrument"

Fig.3

Test flow chart"

Table 4

Moisture environmental parameters"

水环境类型水环境参数
标准试验条件与规范[24]的劈裂、马歇尔稳定度和渗水试验水环境参数一致
浸水马歇尔稳定度试验水温60 ℃、时间约48 h
冻融劈裂试验-18 ℃下冻16 h、60 ℃水中24 h
静态浸水(长期作用)参照浸水马歇尔试验的水环境,即水温60 ℃、时间48 h
MIST(短期作用)参照ASTM D787012,水压0.276 MPa、温度60 ℃和作用次数3500 cycle(约3.5 h)
静态浸水+MIST(短期+长期)参照浸水马歇尔试验与ASTM D787012,先“静态浸水”作用44.5 h,再“MIST”作用3500 cycle(约3.5 h),共计48 h(与静态浸水时间一致)

Fig.4

Influence of different gradation segregation grades on splitting strength"

Fig.5

Influence of segregation grades of different gradations on Marshall stability"

Table 5

Moisture permeability coefficient of asphalt mixture with different grades of segregation"

水环境类型渗水系数/(10-5cm·s-1
HFLFDLCHC
标准试验001540321
浸水031744373
MIST041846371
浸水+MIST062049391

Fig.6

Influence of different gradation segregation grades on water permeability coefficient"

Fig.7

Recommended and standardized evaluation indexes for moisture damage resistance"

Table 6

Recommended moisture damage evaluation indexes and technical requirements"

年降雨量/mm冻融劈裂强度比/%

马歇尔残留

稳定度比/%

>1000≥75≥65
500~1000≥70≥60
250~500,<250≥65≥55

Fig.8

Correlation between recommended and standard moisture damage evaluation indexes"

1 沙庆林. 高速公路沥青路面早期破坏现象及预防[M]. 北京:人民交通出版社 2001.
2 沈金安. 沥青及沥青混合料路用性能[M]. 北京:人民交通出版社 2011.
3 Htet Y Z M. An assessment of moisture induced damage in asphalt pavements[D]. Worcester: Worcester Polytechnic Institute, 2015.
4 沈金安,李福普,陈景. 高速公路沥青路面早期损坏分析与防治对策[M]. 北京:人民交通出版社 2004.
5 姜旺恒. 沥青路面水损坏机理及动水压力试验应用研究[D]. 广州: 华南理工大学交通学院, 2008.
Jiang Wang-heng. Research on water damage mechanism of asphalt pavement and application of hydrodynamic pressure test[D]. Guangzhou: College of Transportation, South China University of Technology, 2008.
6 Byzyka J, Rahman M, Chamberlain D A. Thermal segregation of asphalt material in road repair[J]. Journal of Traffic & Transportation Engineering, 2017,4(4):360-371.
7 王文涛. 多因素耦合动态孔隙水压力对沥青路面破坏的影响研究[D]. 北京: 北京科技大学材料科学与工程学院, 2020.
Wang Wen-tao. Study on the influence of multi-factor coupling dynamic pore water pressure on the failure of asphalt pavement[D]. Beijing: College of Materials Sciences and Engineering, University of Science and Technology Beijing, 2020.
8 Wang W, Wang L, Xiong H, et al. A review and perspective for research on moisture damage in asphalt pavement induced by dynamic pore water pressure[J]. Construction and Building Materials, 2019, 204: 631-642.
9 Mallick R B, Gould J S, Bhattacharjee S, et al. Development of a rational procedure for evaluation of moisture susceptibility of asphalt paving mixes[J]. Asphalt Paving Technology 2003,72:424-462.
10 谭忆秋,李晓琳,胡斌. 动水作用对沥青混合料低温抗裂性的影响[J]. 哈尔滨工业大学学报, 2010, 42(1): 119-122.
Tan Yi-qiu, Li Xiao-lin, Hu Bin. Effect of hydrodynamic action on crack resistance of asphalt mixture at low temperature[J]. Journal of Harbin Institute of Technology, 2010 42(1): 119-122.
11 潘宝峰. 动水压力作用下路面材料损伤的评价方法研究[D].大连:大连理工大学交通运输学院,2010.
Pan Bao-feng. Study on evaluation method of pavement material damage under hydrodynamic pressure[D]. Dalian: College of Traffic and Transportation, Dalian University of Technology, 2010.
12 2013―. Standard practice for moisture conditioning compacted asphalt mixture specimens by using hydrostatic pore pressure [S].
13 Lacroix A, Regimand A, James L. Proposed approach for evaluation of cohesive and adhesive properties of asphalt mixtures for determination of moisture sensitivity[J]. Transportation Research Record Journal of the Transportation Research Board, 2016, 2575: 61-69.
14 Varveri A, Avgerinopoulos S, Scarpas A. experimental evaluation of long- and short-term moisture damage characteristics of asphalt mixtures[J]. Road Materials & Pavement Design, 2016, 17(1): 168-186.
15 李立寒,麻旭荣. 级配离析沥青混合料性能的试验研究[J]. 同济大学学报:自然科学版, 2007, 35(12): 1622-1626.
Li Li-han, Ma Xu-rong. Experimental study on the performance of graded segregated asphalt mixture[J]. Journal of Tongji University (Natural Science Edition), 2007,35(12): 1622-1626.
16 Chen X, Ai C, Du J, et al. Effect of gradation segregation on low-temperature crack resistance of asphalt pavement using 3D DEM[J]. Construction and Building Materials, 2021, 274(3):No.122060.
17 Li J, Liu G, Yang T, et al. Research on relationships among different distress types of asphalt pavements with semi-rigid bases in china using association rule mining: a statistical point of view[J]. Advances in Civil Engineering, 2019, 2019: 1-15.
18 Mannan U A, Ahmad M, Tarefder R A. Influence of moisture conditioning on healing of asphalt binders[J]. Construction & Building Materials, 2017, 146(8): 360-369.
19 Stroup-Gardiner M, Brown E R. Segregation in hot-mix asphalt pavements[J]. Caring national association for home care magazine, 2000.
20 .公路沥青路面施工技术规范 [S].
21 孙立军. 沥青路面结构行为理论[M]. 北京:人民交通出版社 2005.
22 沈金安.关于沥青混合料的均匀性和离析问题[J].公路交通科技,2001(6):20-24.
Shen Jin-an. On uniformity and segregation of asphalt mixture [J]. Highway traffic science and technology, 2001(6):20-24.
23 Florida D. Florida method of test for measurement of water permeability of compacted asphalt paving mixtures[J]. FM5-565, Dept of Transportation, Tallahassee, 2004.
24 .公路工程沥青及沥青混合料试验规程 [S].
25 .公路沥青路面设计规范 [S].
[1] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[2] Zheng-feng ZHOU,Xiao-tao YU,Ya-le TAO,Mao ZHENG,Chuan-qi YAN. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2078-2088.
[3] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[4] Hai-bin WEI,Shuan-ye HAN,Hai-peng BI,Qiong-hui LIU,Zi-peng MA. Intelligent sensing road active ice and snow removal system and experimental technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1411-1417.
[5] Sui-ning ZHENG,Rui HE,Tian-yu LU,Zi-yi XU,Hua-xin CHEN. Preparation and evaluation of RET/rubber composite modified asphalt and asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1381-1389.
[6] Bo-wen GUAN,Wen-jin DI,Fa-ping WANG,Jia-yu WU,Shuo-wen ZHANG,Zhi-xun JIA. Damage of concrete subjected to sulfate corrosion under dry⁃wet cycles and alternating loads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1112-1121.
[7] Fan YANG,Chen-chen LI,Sheng LI,Hai-lun LIU. Numerical simulation of continuously reinforced concrete pavement with double⁃layer reinforcement under effect of temperature shrinkage [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1122-1132.
[8] Hai-bin WEI,Zi-peng MA,Hai-peng BI,Han-tao LIU,Shuan-ye HAN. Conductive rubber composite pavement paving technology based on mechanical response analysis method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 531-537.
[9] Zhuang-zhuang LIU,You-wei ZHANG,Peng-yu JI,Abshir Ismail Yusuf,Lin LI,Ya-zhen HAO. Study on heat transfer characteristics of electric heating snow melting asphalt pavement [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 523-530.
[10] Shuang SHI,Lan-qin LIN,Tao MA,Lin-hao GU,Yan-ning ZHANG. Molecular dynamics‒based stability of biomass prime coat oil [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 197-209.
[11] Yong PENG,Xiu-fang ZHANG,Ze-yu GUO,Xue-yuan LU,Yan-wei LI. Influence of aggregate contact characteristics on shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 178-187.
[12] Ya-zhen SUN,Zhi ZHENG,Wei-ming HUANG,Jin-chang WANG. Structural analysis of cement pavement with cracks based on state⁃space method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 188-196.
[13] Cheng-lin SHI,Yong WANG,Chun-li WU,Wen-zhu SONG. Modification of calculation method for active earth pressure on embankment retaining wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1394-1403.
[14] Qing-lin GUO,Qiang LIU,Chun-li WU,Li-li LI,Yi-ming LI,Fu-chun LIU. Local temperature field and healing level of crack in conductive asphalt and mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1386-1393.
[15] Yu-quan YAO,Jian-gang YANG,Jie GAO,Liang SONG. Optimal design on recycled hot⁃mix asphalt mixture based on performance⁃cost model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 585-595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!