Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (12): 3481-3491.doi: 10.13229/j.cnki.jdxbgxb.20220182

Previous Articles    

Durability assessment model of reinforced concrete bridges based on improved positive and negative clouts decision theory

Nai-jie CHAI(),Wen-liang ZHOU()   

  1. School of Traffic & Transportation Engineering,Central South University,Changsha 410075,China
  • Received:2022-02-28 Online:2023-12-01 Published:2024-01-12
  • Contact: Wen-liang ZHOU E-mail:chainaijie@csu.edu.cn;zwl_0631@csu.edu.cn

Abstract:

Durability evaluation of reinforced concrete bridges is a multi-attribute decision-making problem in uncertain environment. According to the characters of uncertain evaluation indicator and its date information, the gray-target assessment model based on improved positive and negative bulls-eye method was proposed, and the concepts of positive and negative bulls-eye distance and projection value, bulls-eye coefficient, positive and negative bulls-eye distance and comprehensive bulls-eye distance were introduced to realize the integrated macro and micro analysis of bridge durability. The model was applied in the durability assessment of nine reinforced concrete highway bridges in Gansu province, the results show that the ranking orders of durability between the nine bridges: Bridge 6#>7#>4#>8#>1#>3#>2#>5#>9#, and the durability of Bridges 6#, 7# belong to Level Ⅱ, the durability of Bridges 1#, 3#, 4# and 8# to Level Ⅲ, and the durability of Bridges2#, 5#, 9# to Level Ⅳ. Through index sensitivity analysis, it is concluded that the absolute average change rate of bridge durability increases linearly with the increase of absolute value of index weight change rate, and there is a certain relationship between index weight and sensitivity, that is, when the index weight change rate is the same, the higher the index weight, the greater the average change rate of comprehensive evaluation results.

Key words: durability of bridge, positive and negative bulls-eye coefficient, improved gray-target decision, comprehensive bulls-eye distance

CLC Number: 

  • TU375

Fig.1

Improved positive and negative bullhead gray target model assessment process"

Table 1

Durability evaluation index and classification of reinforced concrete bridge"

评价指标等级分类
Ⅰ级(优)Ⅱ级(良)Ⅲ级(中)Ⅳ级(合格)Ⅴ级(不合格)
钢筋锈蚀电位I1/(kg·m-3>-200(-300,-200](-400,-300](-500,-400]≤-500
氯离子含量I2≤0.15(0.15,0.40](0.40,0.70](0.70,1.00]>1.00
混凝土电阻率I3/(kΩ·cm)>20(15,20](10,15](5,10]≤5
构件裂缝情况I4/mm=0(0,1](1,3](3,5]>5
关键位置缝宽I5/mm≤0.05(0.05,0.20](0.20,0.35](0.35,0.50]>0.50
碳化系数I6≤0.5(0.5,1.0](1.0,1.5](1.5,2.0]>2.0
混凝土推定强度匀质系数I7>0.95(0.90,0.95](0.80,0.90](0.70,0.80]≤0.70
钢筋保护层厚度比I8>0.95(0.85,0.95](0.70,0.85](0.55,0.70]≤0.55
钢筋分布情况I9>0.95(0.90,0.95](0.85,0.90](0.80,0.85]≤0.80
桥梁挠度变形I10/%≤0.25(0.25,0.50](0.50,0.75](0.75,1.00]>1.00
交通量比I11≤1.0(1.0,1.3](1.3,1.7](1.7,2.0]>2.0
轴载超标率I12/%=0(0,5](5,15](15,30]>30

Table 2

Evaluation of durability of reinforced concrete bridges"

级别状态对结构承载力和耐久性的影响养护维修措施综合靶心距值di
良好无影响,可忽略无需维修,仅需正常养护0.80<di ≤1.00
较好若不及时维修会在后期影响结构的承载力和耐久性简单局部修补便可修复0.60<di ≤0.80
较差结构的承载能力和耐久性降低,但不要求限制交通局部中修,加强观测0.40<di ≤0.60
处于危险状态,需要限制交通立即采取大面积加固0.20<di ≤0.40
危险可能随时发生坍塌,需禁止通车拆除重建或启动应急预案0.00<di ≤0.20

Table 3

Bridge durability evaluation index test data"

桥梁编号桥梁耐久性评价各指标试验数据统计值
I1I2I3I4I5I6I7I8I9I10I11I12
1#-4320.205.00.60.130.750.980.860.800.360.6530.0
2#-1860.8421.52.60.281.300.840.750.850.240.9418.2
3#-2240.457.85.00.250.820.870.570.940.451.364.9
4#-3520.405.80.90.291.950.800.610.8750.581.173.5
5#-2370.1816.44.20.181.650.970.850.920.381.203.9
6#-2560.749.34.20.541.950.650.500.9050.851.0424.5
7#-2600.953.73.50.341.750.660.540.830.751.1915.8
8#-3260.57154.70.261.300.890.650.930.871.352.3
9#-2050.4516.80.10.210.150.830.850.900.161.704.8

Fig.2

Index positive bull-eye coefficient (γi+) diagram of Bridge 1#~9#"

Fig.3

Index negative bull-eye coefficient (γi- ) diagram of Bridge 1#~9#"

Fig.4

Comparison of positive and negative target distances and comprehensive target distances of Bridge 1#~9#"

Fig.5

Sensitivity analysis of indexes"

1 陈颖杰. 基于模糊C均值聚类的钢筋混凝土桥梁耐久性评价方法研究[D]. 长春: 吉林大学交通学院, 2014.
Chen Ying-jie. Research on durability evaluation of reinforced concrete bridges based on FCM[D]. Changchun: College of Transportation, Jilin University, 2014.
2 李文杰, 侯天宇, 赵君黎, 等. 基于可靠度理论的混凝土桥梁安全性评估方法研究[J]. 公路交通科技, 2017, 34(4): 87-92.
Li Wen-jie, Hou Tian-yu, Zhao Jun-li, et al. Study on safety evaluation method for concrete bridges based on reliability theory[J]. Journal of Highway and Transportation Research and Development, 2017, 34(4): 87-92.
3 Kawamura K, Miyamoto A, Frangopol D M, et al. Performance evaluation of concrete slabs of existing bridges using neural networks[J]. Engineering Structures, 2003, 25(12): 1455-1477.
4 Greta S, Robert K, Dee M. Upgrading bridge durability[J]. Materials Performance, 2011(11): 50-53.
5 Stewart M G, Rosowsky D V, Val D V. Reliability-based bridge assessment using risk-ranking decision analysis[J]. Structural Safety, 2002, 23 (4): 397-405.
6 邓忠, 赵尚传, 刘斌云. 基于多阶段定期检查数据的混凝土桥梁碳化耐久性评估方法[J]. 公路交通科技, 2016, 33(9): 64-68.
Deng Zhong, Zhao Shang-chuan, Liu Bin-yun. An evaluation method for carbonation durability of concrete bridge based on multiple periodic inspection data[J]. Journal of Highway and Transportation Research and Development, 2016, 33(9): 64-68.
7 Cheng Y C, Guo H B, Wang X Q, et al. Durability assessment of reinforced concrete bridge based on fuzzy neural networks[J]. Advanced Materials Research, 2014, 838: 1069-1072.
8 Deng Ju-long. Grey entropy and grey target decision making[J]. Journal of Grey System, 2010, 22(1): 1-4.
9 冯愿. 基于灰靶决策模型的高校息化设备供应商选择研究[J]. 数学的实践与认识, 2021, 51(19): 96-105.
Feng Yuan. Research on information equipment supplier selection in colleges and universities based on the weighted multi-objective grey target decision model[J]. Mathematics in Practice and Cognition, 2021, 51(19): 96-105.
10 陈亮, 刘琦. 加权灰靶决策方法预测煤与瓦斯突出危险研究[J]. 安全与环境工程, 2021, 28(6): 61-66.
Chen Liang, Liu Qi. Risk prediction of coal and gas outburst by weighted grey target decision method[J]. Safety and Environmental Engineering, 2021, 28(6): 61-66.
11 黎振宇, 陈晓国, 宋永超, 等. 二元联系数-投影灰靶决策理论在电网应急能力评估中的应用[J]. 浙江大学学报: 工学版, 2021, 55(5): 927-934, 975.
Li Zhen-yu, Chen Xiao-guo, Song Yong-chao, et al. Application of binary connection number-projection grey target decision theory in power system emergency capability evaluation[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(5): 927-934, 975.
12 高彩云, 崔希民. 基于多因素加权灰靶决策模型的滑坡灾害危险性评价[J]. 中南大学学报:自然科学版, 2016, 47(2): 524-530.
Gao Cai-yun, Cui Xi-min. Landslide risk assessment based on multi-index weighted grey target decision model[J]. Journal of Central South University (Science and Technology), 2016, 47(2): 524-530.
13 蔡佳佳, 方志耕, 张秦, 等. 基于改进调节变量主成分权重的广义灰靶决策模型研究[J]. 系统工程理论与实践, 2020, 40(11): 2991-2999.
Cai Jia-jia, Fang Zhi-geng, Zhang Qin, et al. Research on generalized grey target decision model based on improved principal component weights of moderating variables[J]. Systems Engineering-Theory & Practice, 2020, 40(11): 2991-2999.
14 邓聚龙. 灰理论基础[M]. 武汉: 华中科技大学出版社, 2002.
15 党耀国, 刘思峰, 王正新, 等. 灰色预测与决策模型研究[M]. 北京: 科学出版社, 2009.
16 罗党. 基于正负靶心的多目标灰靶决策模型[J]. 控制与决策, 2013, 28(2): 241-246.
Luo Dang. Multi-objective gray target decision making model based on positive and negative bullhells[J]. Control & Decision, 2013, 28(2): 241-246.
17 郭三党, 刘思峰, 方志耕. 基于后悔理论的多目标灰靶决策方法[J]. 控制与决策, 2015, 30(9): 1635-1640.
Guo San-dang, Liu Si-feng, Fang Zhi-geng. Multi-objective gray target decision making based on regret theory[J]. Control & Decision, 2015, 30(9): 1635-1640.
18 卞小草, 胡志根. 基于决策者风险偏好的混凝土坝浇筑方案灰靶评价模型[J]. 四川大学学报:工程科学版, 2013, 45(4): 21-26.
Bian Xiao-cao, Hu Zhi-gen. Gray target evaluating model of concrete dam pouring schemes based on risk preference of decision makers[J]. Journal of Sichuan University (Engineering Science), 2013, 45(4): 21-26.
19 张俊凤, 花盛. 基于改进灰靶模型的土地整治可持续性评价研究——以江苏省为例[J]. 长江流域资源与环境, 2014, 23(2): 153-160.
Zhang Jun-feng, Hua Sheng. Study on land renovation sustainability assessment based on improved gray target model—a case study of jiangsu province[J]. Resources and Environment in the Yangtze Basin, 2014, 23(2): 153-160.
20 张彬, 滕飞. 现役桥梁承载能力的灰靶理论评价[J]. 辽宁工程技术大学学报: 自然科学版, 2015, 34(4): 480-484.
Zhang Bin, Teng Fei. Grey target theory evaluation of bearing capacity for bridges in use[J]. Journal of Liaoning Technical University (Natural Science), 2015, 34(4): 480-484.
21 王慧, 章恒全. 基于熵权-离差最大化法的小水电投资风险评价[J]. 水电能源科学, 2014, 32(8): 138-141.
Wang Hui, Zhang Heng-quan. Evaluation of investment risk of small hydropower based on entropy-deviation maximization[J]. Hydropower Energy Science, 2014, 32(8): 138-141.
22 武芳文, 丰丙龙, 薛成凤. 铁路钢筋混凝土拱桥使用安全现状评估[J]. 铁道工程学报, 2016, 33(5): 42-47.
Wu Fang-wen, Feng Bing-long, Xue Cheng-feng. Durability assessment on railway reinforced concrete arch bridge[J]. Journal of Railway Engineering Society, 2016, 33(5): 42-47.
23 赵小娟, 叶云, 周晋皓, 等. 珠三角丘陵区耕地质量综合评价及指标权重敏感性分析[J]. 农业工程学报, 2017, 33(8): 226-235.
Zhao Xiao-juan, Ye Yun, Zhou Jin-hao, et al. Comprehensive evaluation of cultivated land quality and sensitivity analysis of index weight in hilly region of pearl river delta[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8): 226-235.
[1] Li-zhao DAI,Liang ZHOU,Xiao-wen YANG,Lei WANG. Meso-scale numerical simulation of interfacial bond behavior of corroded RC beams based on connector element [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2886-2896.
[2] Zhen-yong DI,Xin-hui YANG,Xiao LIN. Punching shear failure test and joint bearing capacity analysis of building slab column structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2879-2885.
[3] Yan-qing ZHANG,Yu-xuan LYU,Shi HAN,Long-fei YOU,Jun ZENG,Fei-yang HOU. Experimental research on flexural performance of tubular roof prefabricated structural components [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1390-1399.
[4] Er-gang XIONG,Zhong-wen GONG,Jia-ming LUO,Tuan-jie FAN. Experiment on cracks in reinforced concrete beams based on digital image correlation technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1094-1104.
[5] Xiao-dong WANG,Ning-jing LI,Qiang LI. Experimental on crushing of concrete beams by high⁃voltage pulse discharge [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 496-504.
[6] Yi-hong WANG,Qiao-luo TIAN,Guan-qi LAN,Sheng-fa YAO,Jian-xiong ZHANG,Xi LIU. Experimental research on the mechanical properties of concrete column reinforced with 630 MPa high⁃strength steel under large eccentric loading [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2626-2635.
[7] Yong-zhi GONG,Jin-hua KUANG,Fu-long KE,Quan ZHOU,Xiao-yong LUO. Experiment on seismic behavior of assembled shear wall joints connected by ultra high performance concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2367-2375.
[8] Wei-hong CHEN,Yan CHEN,Qiu-rong HONG,Shuang-shuang CUI,Xue-yuan YAN. Seismic performance of earthquake⁃damaged precast concrete frame structures strengthened with BRBs [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1817-1825.
[9] Jiang YU,Zhi-hao ZHAO,Yong-jun QIN. Damage of reinforced concrete shear beams based on acoustic emission and fractal [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 620-630.
[10] Wei-xiao XU,Yang CHENG,Wei-song YANG,Jia-chang JU,De-hu YU. Quasi-static test of RC frame-seismic wall dual structural system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 268-277.
[11] Er-gang XIONG,Han XU,Ci TAN,Jing WANG,Ruo-yu DING. Shear strength of reinforced concrete beams based on elastoplastic stress field theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 259-267.
[12] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Experimental of loading-bearing capacity of one-way laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 654-667.
[13] Xiu-zhen WANG,Yong-jiu QIAN,Chang-jiang SHAO,Shuai SONG. Seismic vulnerability analysis of frame structure considering floor correlation [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 202-209.
[14] Ming LI,Hao-ran WANG,Wei-jian ZHAO. Mechanical properties of laminated slab with shear keys [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1509-1520.
[15] Bi⁃xiong LI,Qiao LIAO,Yi⁃ping ZHANG,Lian ZHOU,Ping WEI,Kan LIU. Theoretical on flexural behavior of ultra high strength rebar reinforced engineered cementitious composites beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1153-1161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!