Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1493-1500.doi: 10.13229/j.cnki.jdxbgxb.20220849

Previous Articles    

Reliability allocation of agricultural machinery based on improved integrated factors method

Chao CHEN(),Meng-chu DAI,Le ZHOU,Yun-dong LIANG   

  1. College of Engineering,China Agricultural University,Beijing 100083,China
  • Received:2022-07-02 Online:2024-05-01 Published:2024-06-11

Abstract:

Existing reliability allocation methods are less applied in the field of agricultural machinery, and in order to better meet the reliability allocation needs of agricultural machinery, this paper proposes a reliability allocation method for agricultural machinery based on improved integrated factors method(IFM). The method integrates six influencing factors including subsystem severity A1, improvement potential A2, complexity A3, maintainability A4, environmental conditions A5 and technology level A6 for the characteristics of agricultural machinery, and forms the weight factor of subsystem failure rate to realize the allocation of the specified overall system reliability target to the subsystem level. For newly developed products, the evaluation reference standard for the value of each influence factor is given, which can be quantitatively calculated by FMECA combined with expert scores. Taking 2BMQF-6/12 no-till planter as an example, the improved IFM is applied to allocate its reliability, and the feasibility of the proposed method is verified by comparing it with the IFM, FOO, Kim's and Yadav's methods. The allocation results of the proposed method are reasonable, the process is complete, and the factors considered are relatively comprehensive, which can provide a reference for the reliability allocation of agricultural machinery and a basis for the reliability design of agricultural machinery products.

Key words: agricultural machinery, reliability allocation, integrated factors method, design phase

CLC Number: 

  • S220

Table 1

Suggested ranking for the severity and the occurrence"

评定等级严重度发生度
影响定义程度定义
1,3,5,7,9上述等级间的折衷上述等级间的折衷
10灾难危及生命安全,产品报废,造成重大损害经常发生故障占比≥20%
8致命造成人员严重受伤,产品严重损坏时有发生故障占比10%~20%
6中度造成人员中度受伤,产品中度损坏偶然发生故障占比1%~10%
4轻度造成人员轻度受伤,产品轻度损坏很少发生故障占比0.1%~1%
2极小不造成人员受伤,仅需增加计划性维修极少发生故障占比≤0.1%

Table 2

Suggested ranking for the maintainability"

等级246810
停机时间/h12024821/3

Fig.1

2BMQF-6/12 no-till planter structure"

Table 3

No-till planter system structure division"

子系统组件零件种类

切茬

装置

刀具圆盘侧切刀
刀轴刀轴、轴承、端盖、防草板

播种

系统

排种器排种器芯、排种器轴、轴承、壳体
播种腿播种腿、排种管

排肥

系统

排肥器排肥器芯、排肥器轴、轴承、壳体
肥腿肥腿犁铧、犁尖、排肥管

镇压

装置

地轮地轮、地轮轴
刮土装置挡泥梁、挡泥板

传动

系统

变速箱齿轮、箱体、传动轴、轴承/端盖、联轴器
调整手柄手柄、定位盘、锁紧盘
传动链链、链轮、链轮罩、轴承
机架机架机架、拉杆、U形螺栓/卡板、盖板、侧板
支臂支臂、扇形板、限位螺栓
种肥箱种肥箱箱体、隔板、种刷、肥刷

Fig.2

Common faults of no-till planter"

Table 4

FMECA of fertilizer discharge system"

组件失效模式零件数量严重度发生度严重度转换值转换后RPN维修性环境条件技术水平
排肥器排肥器芯损坏漏肥64224.532549.065170.33330.6
排肥器轴卡死34224.532549.06517
壳体破损64124.532524.53257
排肥腿排肥腿犁铧弯曲变形64224.532549.065170.44440.4
犁尖掉落6254.953024.765210
排肥管损坏变形/堵塞6122.22554.451110

Table 5

FMECA of transmission system"

组件失效模式零件数量严重度发生度严重度转换值转换后RPN维修性环境条件技术水平
变速箱齿轮断齿562121.5104243.020850.33330.72
传动轴损坏361121.5104121.51046
联轴器损坏15354.5982163.79457
调整手柄调整手柄损坏/过紧2224.95309.906190.33330.6
传动链链条损坏25354.5982163.794570.33330.8
链轮轮牙折断45254.5982109.19637
链轮罩受损变形1234.953014.85918
轴承/端盖轴承/端盖磨损154124.532524.532580.33330.9

Table 6

No-till planter IFM indexes matrix"

子系统危害度A1改进潜力A2复杂度A3维修性A4环境条件A5技术水平A6
切茬装置0.16750.15300.19050.18350.20770.1479
播种系统0.03040.18830.19640.16200.13850.2260
排肥系统0.03040.15040.16070.17520.16920.1791
镇压装置0.16750.18340.08930.15900.20770.1114
传动系统0.10150.15640.20830.15190.13850.2034
机架0.50260.16850.15480.16840.13850.1323

Table 7

Reliability allocation results based on improved IFM"

子系统失效率权重故障率可靠性
总计1.00000.05000.9509
切茬装置0.12160.00610.9939
播种系统0.32770.01640.9836
排肥系统0.35720.01790.9821
镇压装置0.07860.00390.9961
传动系统0.09010.00450.9955
机架0.02480.00120.9988

Table 8

Comparison of reliability allocation results"

子系统FOOKimYadavIFM改进IFM
切茬装置98.675598.860099.436599.531399.3920
播种系统99.404199.333098.738498.668098.3615
排肥系统99.248298.052598.420297.820498.2140
镇压装置99.176299.646299.530199.890199.6069
传动系统99.297899.243199.386699.153699.5495
机架99.198399.865299.488299.936599.8760

Fig. 3

Comparison of reliability allocation results"

1 国务院. 国务院关于加快推进农业机械化和农机装备产业转型升级的指导意见[EB/OL]. [2018-12-29]. .
2 中华人民共和国农业农村部农业机械化管理司. 2020年玉米免耕播种机质量调查报告[EB/OL]. [2021-02-20]. .
3 郝庆波, 杨兆军, 陈传海, 等. 基于区间层次分析法的数控机床可靠性预计[J]. 吉林大学学报:工学版, 2012, 42(4): 845-850.
Hao Qing-bo, Yang Zhao-jun, Chen Chuan-hai, et al. Reliability prediction for NC machine tool based on interval AHP[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(4): 845-850.
4 宋林, 王立平, 吴军, 等. 基于信息物理融合和数字孪生的可靠性分析[J]. 吉林大学学报:工学版, 2022, 52(2): 439-449.
Song Lin, Wang Li-ping, Wu Jun, et al. Reliability analysis based on cyber-physical system and digital twin[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(2): 439-449.
5 Kuo W, Prasad V R, Tillman F A, et al. Optimal reliability design:fundamentals and applications[M]. Cambridge: Cambridge University Press, 2006.
6 Salazar D, Rocco C M, Galvan B J. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms[J]. Reliability Engineering & System Safety, 2006, 91(9): 1057-1070.
7 Yalaoui A, Chu C, Chatelet E. Reliability allocation problem in a series-parallel system[J]. Reliability Engineering & System Safety, 2005, 90(1): 55-61.
8 Kapur K C, Lamberson L R. Reliability in engineering design[M]. New York: John Wiley & Sons, 1977.
9 Catelani M, Ciani L, Patrizi G, et al. Reliability allocation procedures in complex redundant systems[J]. IEEE Systems Journal, 2017,12(2):1-11.
10 Advisory Group of Reliability of Electronic Equipment (AGREE) Reliability of military electronic equipment[M]. Washington, DC: Office of the Assistant Secretary of Defense Research and Engineering, 1957.
11 向宇,黄大荣,黄丽芬. 基于灰色关联理论AGREE方法的BA系统可靠性分配[J]. 计算机应用研究,2010,27(12):4489-4491.
Xiang Yu, Huang Da-rong, Huang Li-fen. Reliability allocation of BA system based on grey relative theory and AGREE[J]. Application Research of Computers, 2010, 27(12):4489-4491.
12 Anderson R T. Reliability design handbook[M]. Genoal: IIT Research Institute, 1976.
13 Di Bona G, Silvestri A, et al. Reliability target assessment based on integrated factors method (IFM): a real case study of a sintering plant[J]. Journal of Failure Analysis and Prevention, 2016, 16(6):1038-1051.
14 Di Bona G, Falcone D, Silvestri A, et al. IFM target 2.0: an innovative method to define reliability target for prototype systems[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12): 3349-3367.
15 Department of Defense of USA. MIL-H , Electronic design reliability handbook[S].
16 Kim K O, Yang Y, Zuo M J. A new reliability allocation weight for reducing the occurrence of severe failure effects[J]. Reliability Engineering & System Safety, 2013, 117:81-88.
17 Yadav O P, Zhuang X. A practical reliability allocation method considering modified criticality factors [J]. Reliability Engineering & System Safety, 2014, 129:57-65.
18 张玉刚,孙杰,喻天翔. 考虑不同失效相关性的系统可靠性分配方法[J]. 机械工程学报,2018,54(24):206-215.
Zhang Yu-gang, Sun Jie, Yu Tian-xiang. A reliability allocation method considering failure correlation based on vine copula[J]. Journal of Mechanical Engineering, 2018,54(24):206-215.
19 Zhang Y G, Yu T, Song B. A reliability allocation method of mechanism considering system performance reliability[J]. Quality and Reliability Engineering, 2019, 35(7): 2240-2260.
20 Li G, Zhong Y, Chen C, et al. Reliability allocation method based on linguistic neutrosophic numbers weight Muirhead mean operator[J]. Expert Systems with Applications, 2022, 193: No. 116504.
21 . 故障模式、影响及危害性分析指南 [S].
22 蒋平, 李浩泽, 杜洪恿, 等. 基于FMECA方法的旋耕机可靠性分析[J]. 中国农机化学报, 2019, 40(12): 212-216.
Jiang Ping, Li Hao-ze, Du Hong-yong, et al. Reliability analysis of rotary tiller based on FMECA method[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 212-216.
23 Wang Yi-qiang, Richard C.M. Yam, Ming J. Zuo,et al. A comprehensive reliability allocation method for design of CNC lathes[J]. Reliability Engineering & System Safety, 2001, 72(3): 247-252.
24 Department of Defense. MIL HDBK 217F, Reliability Prediction of Electronic Equipment[Z].
[1] Bin FENG,Tao ZHANG,Tao LIANG,Ying ZHANG,Xing-long TANG,Guan-ping WANG. Design and experiment of silage baling and wrapping machine with electric driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 564-573.
[2] Rui-jie SHI,Fei DAI,Wu-yun ZHAO,Fa-rong YANG,Feng-wei ZHANG,Yi-ming ZHAO,Hao QU,Tian-fu WANG,Jun-hai GUO. Design and experiments of self⁃propelled quinoa combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2686-2694.
[3] Si-lin CAO,Jian-hua XIE,Yu-xin YANG,Yong-rui LIU,Yong-tao LU,Bo SUN. Design and experiment of side row cotton straw returning and residual film recovery combined machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1514-1528.
[4] Xue-jun ZHANG,Shuang HUANG,Zeng-lu SHI,Yong-liang YU,Xin-cheng ZHOU,Wei JIN,Yong CHEN,Jia HONG. Design and test of the remaining film picking and baling machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1220-1230.
[5] Guo-qiang DUN,Wen-hui LIU,Xing-peng WU,Ning MAO,Wen-yi JI,Hong-yan MA. Simulation optimization and experiment of screw extrusion precision fertilizer ejector [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 3026-3037.
[6] Rui-jie SHI,Fei DAI,Wu-yun ZHAO,Xiao-long LIU,Jiang-fei QU,Feng-wei ZHANG. Optimization and experiment of operation parameters of hilly area flax combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2746-2755.
[7] Ji-cheng HUANG,Cheng SHEN,Ai-min JI,Xian-wang LI,Bin ZHANG,Kun-peng TIAN,Hao-lu LIU. Optimization of cutting⁃conveying key working parameters of hemp harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 772-780.
[8] Xue-shen CHEN,Tao CHEN,Tao WU,Xu MA,Ling-chao ZENG,Lin-tao CHEN. Design and experiment on harvester for winter planting potato of straw coverage [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 749-757.
[9] HAN Bao,WU Wen-fu,QUAN Long-zhe. Multi-objective optimization design and simulation on horizontal disk type weeding unit between seedlings [J]. 吉林大学学报(工学版), 2011, 41(03): 692-696.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!