Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1482-1492.doi: 10.13229/j.cnki.jdxbgxb.20230666

Previous Articles    

Design and experiment of biomimetic sliding plate for rice direct seeding machine based on loach body surface

Guo-zhong ZHANG1,2(),Kai-quan DING1,2,Zheng-bo LI1,2,Long CHEN1,2,Nan-rui TANG1,2,Wan-ru LIU1,2,Hai-dong HUANG1,2,Yong ZHOU1,2,Hong-chang WANG1,2()   

  1. 1.College of Engneering,Huazhong Agricultural University,Wuhan 430070,China
    2.Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River,Ministry of Agriculture and Rural Affairs,Wuhan 430070,China
  • Received:2023-10-12 Online:2024-05-01 Published:2024-06-11
  • Contact: Hong-chang WANG E-mail:zhanggz@mail.hzau.edu.cn;wanghc84@mail.hzau.edu.cn

Abstract:

In response to the problem of heavy adhesion and high resistance of the rice direct seeder skateboard in the disturbed and saturated paddy field, the non-smooth surface of the loach body was observed microscopically; Using Fluent software for simulation and analysis, the principle of reducing viscosity and resistance on the non-smooth surface has been revealed; The Box Behnken response surface method was used to design the experiment and obtain the regression equations of the total resistance FB of the non-smooth surface of the groove with the groove width w, groove depth h, and inflow velocity v. The optimization analysis results showed that the maximum drag reduction rate reached 10.052% when w was 4.5 mm, h was 4 mm, and v was 1.25 m/s; Based on the optimal parameters, a biomimetic sliding plate for rice direct seeding machine was designed, and indoor paddy soil tank experiments were conducted, with a drag reduction rate of 10.23% ultimately. This study can provide new ideas for the development of viscosity reduction and resistance reduction technology for paddy field soil contacting components.

Key words: agricultural mechanization engineering, loach biomimetic, non-smooth surface, paddy soil, reduce adhesion and resistance

CLC Number: 

  • S233.71

Fig.1

Rheometer test"

Fig.2

Computational domain model for biomimetic non-smooth surfaces"

Table 1

Single factor experimental arrangement"

序号试验因素
沟宽/mm沟深/mm来流速度/(m·s-1
13,3.5,4,4.5,541
243,3.5,4,4.5,51
3440.25,0.5,0.75,1,1.25

Table 2

Test factor level coding"

编码沟宽/mm沟深/mm来流速度/(m·s-1
-1430.75
04.53.51
1541.25

Table 3

BBD test plan and results"

序号

w/

mm

h/

mm

v/

(m·s-1

仿生表面

总阻力/N

光滑表面 总阻力/N

减阻率/

%

1000243.141270.0679.970
21-10245.010270.2689.346
3-10-1186.032206.75410.023
4011311.008345.76310.052
5101304.679338.4689.983
60-11305.898338.9909.762
7-110252.271276.1418.644
8110249.157275.2419.477
90-1-1182.567202.1819.701
1001-1185.699206.44910.051
11-101311.533345.7639.900
12-1-10250.213276.2209.415
13000243.141270.0679.970
1410-1181.819201.8619.929
15000243.141270.0679.970

Fig.3

Structural parameters of bionic non-smooth sliding plate model"

Fig.4

Bionic non-smooth sliding plate model test in paddy soil tank"

Fig.5

Surface characteristics of loach scales"

Fig.6

Microstructural characteristics of scales"

Fig.7

Rheological curves of paddy soil with 5 different moisture contents"

Table 4

Fitting results of BC segment H-B model for 5 soil samples with different moisture contents"

含水率/%拟合结果
屈服应力τ0/Pa

稠度系数

k/(Pa·s-1

幂律指数nR2
401823.636455.870.950.964
45831.261264.580.420.960
50131.91401.700.550.986
55120.4578.160.630.992
6016.2224.170.600.990

Fig.8

Velocity nephogram and streamline diagram"

Fig.9

Data analysis results"

Fig.10

Single factor test results"

Table 5

Regression model variance analysis"

来源平方和自由度均方FP
模型31 016.1193 446.2311 694.84<0.000 1
w46.96146.96159.37<0.000 1
h26.09126.0988.540.000 2
v30 876.25130 876.251.05E+05<0.000 1
wh1.0911.093.70.112 2
wv1.7411.745.920.059 2
hv0.97810.9783.320.128 1
w230.46130.46103.360.000 2
h236.62136.62124.250.000 1
v20100.000 10.993 6
残差1.4750.294 7
失拟项1.4730.491 1
纯误差020
总计31 017.5814

Fig.11

Effect of interaction among factors on the total resistance of bionic non-smooth surfaces"

Table 6

Soil tank test results"

序号仿生非光滑滑板模型的运动阻力FB /N光滑滑板模型的运动阻力FS /N减阻率Dec/%
平均值139.53155.4310.23
1136.23150.639.56
2137.38155.7911.82
3140.87155.789.57
4142.74160.4611.04
5140.43154.489.10
1 曹明. 水田土壤承载特性与物理参数相关性研究[D]. 杭州:浙江大学生物系统工程与食品科学学院,2019.
Cao Ming. Studies on correlation between soil carrying capacity and physical parameters of paddy soil[D]. Hangzhou: College of Biosystems Engineering and Food Science, Zhejiang University, 2019.
2 Gao Y, Zhang G, Wang H, et al. Measuring system design and experiment for ground pressure on seeding skateboard of rice direct seeding machine[J]. Applied Sciences, 2021, 11(21): 10024.
3 陈青春,石勇,丁启朔,等. 正反转旋耕作业的秸秆混埋效果比较[J]. 农业工程学报,2015,31(9):13-18.
Chen Qing-chun, Shi Yong, Ding Qi-shuo, et al. Comparison of straw incorporation effect with down-cut and up-cut rotary tillage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(9): 13-18.
4 王金武,尹大庆,韩永俊,等. 水稻秸秆整株还田机的设计与试验[J]. 农业机械学报,2007,38(10):54-56.
Wang Jin-wu, Yin Da-qing, Han Yong-jun . et al. Design and experiment of a rice straw whole plant returning machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(10): 54-56.
5 Zhang Guo-zhong, Wang Hong-chang, Du Jun, et al. Prominent problems and thoughts of paddy soil-terrain machine system based on disturbed saturated paddy soil conditions in South China[C]∥ 11th Asia-Pacific Regional Conference of the ISTVS, Harbin, China,2022.
6 任露泉,佟金,李建桥,等. 松软地面机械仿生理论与技术[J]. 农业机械学报,2000(1):5-9.
Ren Lu-quan, Tong Jin, Li Jian-qiao, et al. Biomimetics of machinery for soft terrain[J]. Transactions of the Chinese Society for Agricultural Machinery, 2000(1): 5-9.
7 李建桥,黄晗,王颖,等. 松软地面机器系统研究进展[J]. 农业机械学报,2015,46(5):306-320.
Li Jian-qiao, Huang Han, Wang Ying, et al. Development on research of soft-terrain machine systems[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 306-320.
8 Abouelnadar El Salem, Zhang Guo-zhong, Wang Hong-chang, et al. The effect of integrating a bio-inspired convex structure with a low-surface energy polymer on soil adhesion and friction[J]. Journal of Terramechanics, 2023, 109: 93-100.
9 Wang Hong-chang, Ding Kai-quan, Zhang Guo-zhong, et al. Research on drag reduction performance of sliding plate of rice direct seeding machine based on non-smooth structure of loach surface[J]. Journal of Terramechanics, 2023, 110:79-85.
10 隗海林,王海洲,倪伟新,等. 仿生非光滑表面对车用柴油机螺旋进气道流通特性的影响[J]. 吉林大学学报:工学版,2014,44(3):668-674.
Kui Hai-lin, Wang Hai-zhou, Ni Wei-xin, et al. Flow characteristics in diesel helical intake port bionic with non-smooth surface[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(3): 668-674.
11 杨晓东,任露泉. 形体减阻类型、减阻机理与仿生[J]. 农业机械学报,2003(1):130-133.
Yang Xiao-dong, Ren Lu-quan. Types and mechanisms of shape drag reduction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003(1): 130-133.
12 Fu Y F, Yuan C Q, Bai X Q. Marine drag reduction of shark skin inspired riblet surfaces[J]. Biosurface and Biotribology, 2017, 3(1): 11-24.
13 孙久荣,程红,丛茜,等. 蜣螂(Copris ochus Motschulsky)减粘脱附的仿生学研究[J]. 生物物理学报,2001(4):785-793.
Sun Jiu-rong, Cheng Hong, Cong Qian, et al. Bionic study on the dung beetle copris ochus motschulsky for reduction of soil adhesion[J]. Acta Biophysica Sinica, 2001(4): 785-793.
14 张璇,白秀琴,袁成清,等. 防污贝壳表面纹理特征减阻效应仿真分析[J]. 中国造船,2013,54(4):146-154.
Zhang Xuan, Bai Xiu-qin, Yuan Cheng-qing, et al. Simulation analysis on drag reduction effect of shell surface texture with function of anti-fouling[J]. Shipbuilding of China, 2013, 54(4): 146-154.
15 任露泉,张成春,田丽梅. 仿生非光滑用于旋成体减阻的试验研究[J]. 吉林大学学报:工学版,2005(4):431-436.
Ren Lu-quan, Zhang Cheng-chun, Tian Li-mei. Experimental study on drag reduction for bodies of revolution using bionic non-smoothness[J]. Journal of Jilin University (Engineering and Technology Edition), 2005, 35(4): 431-436.
16 王政,李田,李明,等. 仿生表面微结构减阻优化及机理研究综述[J]. 河北科技大学学报,2017,38(4):325-334.
Wang Zheng, Li Tian, Li Ming, et al. Review of mechanical research and aerodynamic drag reduction of bionic surfaces micro-structures[J]. Journal of Hebei University of Science and Technology, 2017, 38(4): 325-334.
17 Gu Y, Zhao G, Zheng J, et al. Experimental and numerical investigation on drag reduction of non-smooth bionic jet surface[J]. Ocean Engineering, 2014, 81: 50-57.
18 Heidarian A, Ghassemi H, Liu P. Numerical analysis of the effects of riblets on drag reduction of a flat plate[J]. Journal of Applied Fluid Mechanics, 2018, 11(3): 679-688.
19 Walsh M J. Riblets as a viscous drag reduction technique[J]. AIAA Journal, 1983, 21(4): 485-486.
20 Bechert D W, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338: 59-87.
21 Martin S, Bhushan B. Modeling and optimization of shark-inspired riblet geometries for low drag applications[J]. Journal of Colloid and Interface Science, 2016, 474: 206-215.
22 唐俊,刘岩岩,闫一天. 水下航行器仿生非光滑表面减阻特性[J]. 兵工学报,2022,43(5):1135-1143.
Tang Jun, Liu Yan-yan, Yan Yi-tian. Drag reduction characteristics of bionic non-smooth surface for underwater vehicle[J]. ActaArmamentarii, 2022, 43(5): 1135-1143.
23 Qaisrani R, LI J, Khan M A, et al. Soil adhesion preventing mechanism of bionic bulldozing plates and mouldboard ploughs[J]. Advances in Natural Science, 2010, 3(2): 100-107.
24 Chirende B, Li J Q, Wen L G, et al. Effects of bionic non-smooth surface on reducing soil resistance to disc ploughing[J]. Science China Technological Sciences, 2010, 53: 2960-2965.
25 邬立岩,齐胜,宋玉秋,等. 水田作业机械仿生表面减阻机理的离散元研究[J]. 沈阳农业大学学报,2017,48(1):55-62.
Wu Li-yan, Qi Sheng, Song Yu-qiu, et al. A DEM analysis on drag reduction characteristics of paddy field machinery surface with bionic microarchitectures[J]. Journal of Shenyang Agricultural University, 2017, 48(1): 55-62.
26 焦志彬. 插秧机船板表面微观结构仿生减阻研究[D]. 沈阳:沈阳农业大学工程学院,2017.
Jiao Zhi-bin. Research on drag reduction of transplanter float with bionic microstructures[D].Shenyang: Engineering College, Shenyang Agricultural University, 2017.
27 Yan G, Tian P, Mo J, et al. Low-velocity resistance distortion and bionic drag reduction for ship-type paddy field machinery[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(2): 7-14.
28 Wang Y, Li N, Ma Y, et al. Field experiments evaluating a biomimetic shark-inspired (BioS) subsoiler for tillage resistance reduction[J]. Soil and Tillage Research, 2020, 196: 104432.
29 孙朋朋. 泥鳅粘液中凝集素的提取、分离、纯化及性质研究[D]. 天津:天津科技大学食品科学与工程学院,2019.
Sun Peng-peng. Study on extraction, isolation purification and characterization of lection from loach skin mucus[D]. Tianjin: College of Food Science and Engineering, Tianjin University of Science&Technology, 2019.
30 温健. 大鳞副泥鳅(P.Dabryanus)体表柔性微形貌减阻特性仿生研究[D]. 沈阳:沈阳农业大学工程学院,2020.
Wen Jian. Study on drag reduction characteristics of P. Dabryanus loach surface flexible micro-morphology[D]. Shenyang: Engineering College, Shenyang Agricultural University, 2020.
31 Seo E, Yoon G Y, Kim H N, et al. Morphological features of mucous secretory organ and mucous secretion of loach misgurnus anguillicaudatus skin for friction drag reduction[J]. Journal of Fish Biology, 2020, 96(1): 83-91.
32 Wu L, Wang H, Song Y, et al. Drag reduction mechanism of paramisgurnus dabryanus loach with self-lubricating and flexible micro-morphology[J]. Scientific Reports, 2020, 10(1): 12873.
33 Wu L, Wang J, Luo G, et al. Study on the drag reduction characteristics of the surface morphology of paramisgurnus dabryanus loach[J]. Coatings, 2021, 11(11): No. 1357.
34 诸葛茜,冉天麟,罗大海. 水田土壤的切变速率与剪切应力关系的试验研究[J]. 武汉工学院学报,1984(3):65-79.
Zhuge Qian, Ran Tian-lin, Luo Da-hai. Researches on relation between shear strain rate and shear stress of paddy soils[J]. Journal of Wuhan Institute of Technology, 1984(3): 65-79.
35 杨益,李兴高,李兴春,等. 基于Herschel-Bulkley流变模型的盾构螺旋输送机保压性能[J]. 湖南大学学报:自然科学版,2021,48(11):195-204.
Yang Yi, Li Xing-gao, Li Xing-chun, et al. Pressure maintaining performance of shield screw conveyor based on herschel-bulkley rheological model[J]. Journal of Hunan University(Natural Sciences), 2021, 48(11): 195-204.
36 Yang Y, Li X G, Su W L. Experimental Investigation on rheological behaviors of bentonite-and CMC-conditioned sands[J]. KSCE Journal of Civil Engineering, 2020, 24(6): 1914-1923.
37 Jeong S W, Locat J, Leroueil S, et al. Rheological properties of fine-grained sediment: the roles of texture and mineralogy[J]. Canadian Geotechnical Journal, 2010, 47(10): 1085-1100.
38 杨闻宇. 剪切载荷作用下高浓度粘性泥沙流变特性的实验研究[D]. 上海:上海交通大学船舶海洋与建筑工程学院,2014.
Yang Wen-yu. Experimental study on the rheological properties of dense cohesive sediments under shear loadings[D].Shanghai: School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, 2014.
39 Scholle M, Rund A, Aksel N. Drag reduction and improvement of material transport in creeping films[J]. Archive of Applied Mechanics, 2006, 75: 93-112.
[1] Fu ZHANG,Li-min LOU,Dan QIAN,Shi-qiang WANG,Chun-ling FENG,Yi-rong ZHAO. Optimum design and test of compression mechanism of big square baler [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1166-1174.
[2] Peng-fei ZHOU,Xue-geng CHEN,He-wei MENG,Rong-qing LIANG,Bing-cheng ZHANG,Za KAN. Design and experiment of trommel with function of separating soil from residual film mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2718-2731.
[3] Wei-jian LIU,Xi-wen LUO,Shan ZENG,Zhi-qiang WEN,Li ZENG. Field turning mechanism and performance test of crawler reclaimed rice harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2695-2705.
[4] Mao-jian ZHANG,Jing-fu JIN,Yi-ying CHEN,Ting-kun CHEN. Vibration symmetry characteristics of wheeled tractor structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2136-2142.
[5] Guang-qiang ZHU,Tian-yu LI,Fu-jun ZHOU,Wen-ming WANG. Design and experiment of bionic ear picking device for fresh corn [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1231-1244.
[6] Guo-qiang DUN,Wen-hui LIU,Ning MAO,Xing-peng WU,Wen-yi JI,Hong-yan MA. Optimization design and experiment of alternate post changing seed metering device for soybean plot breeding [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 285-296.
[7] Shan ZENG,Deng-pan HUANG,Wen-wu YANG,Wei-jian LIU,Zhi-qiang WEN,Li ZENG. Design and test of the chassis of triangular crawler reclaiming rice harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1943-1950.
[8] Guo-liang WEI,Qing-song ZHANG,Biao WANG,Kun HE,Qing-xi LIAO. Analysis and experiment on parameters of plough body of rapeseed direct seeder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1709-1718.
[9] Jia-jie LIU,Lan MA,Wei XIANG,Bo YAN,Qing-hua WEN,Jiang-nan LYU. Design of 4QM⁃4.0 fibre crops green fodder combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 3039-3048.
[10] Bai-gong ZENG,Kui-liang LI,Jin YE,Li-li REN,Jaloliddin Rashidov,Ming ZHANG. Design and experiment of harvesting device for industrialized production line of Shanghaiqing [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2756-2764.
[11] Xing-yu WAN,Qing-xi LIAO,Ya-jun JIANG,Yi-yin SHAN,Yu ZHOU,Yi-tao LIAO. Discrete element simulation and experiment of mechanized harve- sting and chopping process for fodder rape crop harvest [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2735-2745.
[12] Guang-qiang ZHU,Tian-yu LI,Fu-jun ZHOU. Design and experiment of flexible clamping and conveying device for bionic ear picking of fresh corn [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2486-2500.
[13] Rong-qing LIANG,Bo ZHONG,He-wei MENG,Zhi-min SUN,Za KAN. Design of 4QJ⁃3 type pickup header of silage oat [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1887-1896.
[14] Jia-cheng YUAN,Chang WANG,Kun HE,Xing-yu WAN,Qing-xi LIAO. Effect of components mass ratio under sieve on cleaning system performance for rape combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1897-1907.
[15] Zhao XUE,Jun FU,Zhi CHEN,Feng-de WANG,Shao-ping HAN,Lu-quan REN. Optimization experiment on parameters of chopping device of forage maize harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 739-748.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!