Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (11): 3429-3445.doi: 10.13229/j.cnki.jdxbgxb.20240149

   

Review of multi-object tracking based on deep learning

Lai-wei JIANG1(),Ce WANG2,Hong-yu YANG1   

  1. 1.School of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China
    2.School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China
  • Received:2024-02-05 Online:2025-11-01 Published:2026-02-03

Abstract:

Firstly, this paper points out the challenges faced by the design of multi-target tracking algorithms and the limitations of traditional methods. Secondly, a literature review and analysis of two types of algorithms are conducted: detection-based-tracking and joint-detection-tracking. Then, the commonly used evaluation indicators and publicly available datasets in the multi-object tracking algorithms were summarized, and the performance indicators of the two types of methods were analyzed. Finally, based on the current research status, the predictions and outlooks on the problems to be solved and the focuses of the future researches are made.

Key words: computer vision, multi-object tracking, detection based tracking, joint detection tracking, deep learning

CLC Number: 

  • TP391

Fig.1

Common interference factors in MOT"

Fig.2

Context diagram of representative MOT algorithm development at different stages"

Fig.3

DBT and JDT algorithm flowchart"

Fig.4

Common MOT methods based on deep learning"

Fig.5

Schematic diagram of siamese network target tracking"

Table 1

Overview of typical MOT datasets"

数据集名称年份视频序列大小/GB特点及描述
KITTI Tracking6820125015允许同时追踪人和车辆
MOT15692015221.3场景丰富,密集程度低
MOT16702016141.9场景丰富,规范标注,目标密集程度更高
MOT17702016145.5增加更多场景,提供了更多的公开检测器
MOT2071202085.0人群更加密集,相互遮挡情况更加严重
DanceTrack72202210016.5目标外观相似且存在大量遮挡,运动模式复杂

Table 2

Performance evaluation results of MOT17 dataset algorithm"

方法类别检测器其他数据MOTA/%↑IDF1/%↑HOTA/%↑FN↓FP↓IDs↓速度/FPS
DeepSORT33DBT公共60.357.436 1115 5298.1
DAN25DBT公共53.949.5234 59225 4238 4316.3
GHOST35DBT私有78.777.162.82 325
SHSHI40DBT公共62.071.554.6183 82529 4281 04121.1
ByteTrack23DBT公共67.470.056.1172 6369 9391 33127.4
ByteTrack*23DBT私有80.377.363.183 72125 4912 19629.6
MTA30DBT公共67.169.2161 54722 7561 27918.5
MAT30DBT私有69.563.1138 74130 6602 84418.5
OC-SORT*29DBT私有78.077.563.2108 00015 1001 950
MotionTrack31DBT私有81.180.165.181 66023 8021 149
TransTrack42JDT私有74.563.954.1112 13728 3233 36310.0
TransMOT46JDT私有76.775.161.793 15036 2312 3469.6
TransCenter45JDT私有71.962.354.4137 00817 3784 0461.0
TrackFormer43JDT私有74.168.057.3108 77734 6022 8927.4
MOTR47JDT私有73.468.657.8135 56121 1232 1157.5
QDTrack53JDT私有68.766.3146 64326 5893 378
SiamMOT55JDT公共65.963.3170 95518 0983 040
MOTRv248JDT私有78.675.062.0
JDE57JDT私有63.059.5162 92739 8886 17118.8
CStrack61JDT私有74.972.3114 30323 8473 56716.4
FairMOT62JDT私有73.772.359.3117 47727 5073 30325.9
AdaMOT64JDT私有74.975.5112 13426 8832 61326.0
AdaMOT*64JDT私有75.775.595 38539 7772 22626.0

Table 3

Performance evaluation results of MOT20 dataset algorithm"

方法类别检测器其他数据MOTA/%↑IDF1/%↑HOTA/%↑FN↓FP↓IDs↓速度/FPS
ByteTrack23DBT私有77.875.261.387 59426 2491 22317.5
GHOST35DBT公共52.755.343.41 216
GHOST35DBT私有73.775.261.2
SHSHI40DBT公共61.671.655.4168 09829 4291 0535.5
OC-SORT*29DBT私有75.575.962.1108 00018 000913
MotionTrack31DBT私有78.076.562.884 15228 6291 165
BASE32DBT私有78.277.663.684 21127 60698416.8
CStrack61JDT私有66.668.6144 35825 4043 1964.5
FairMOT62JDT私有61.867.354.688 901103 4401 33113.2
AdaMOT64JDT私有68.871.8117 00941 9932 40612.1
AdaMOT*64JDT私有69.171.499 83358 4711 79212.1
TrackFormer43JDT私有68.665.754.1140 37320 3841 5325.7
TransTrack42JDT私有65.059.448.9150 19727 1913 06814.9
TransCenter45JDT私有61.049.843.5147 89049 1894 4931.0
MOTRv248JDT私有76.272.260.3

Table 4

Performance evaluation results of DanceTrack dataset algorithm"

方法类别检测器其他数据HOTA/%↑DetA/%↑AssA/%↑MOTA/%↑IDF1/%↑
ByteTrack*23DBT私有47.771.032.189.653.9
OC-SORT*29DBT私有55.180.440.492.254.9
SUSHI40DBT私有63.380.150.188.763.4
Hybrid-SORT36DBT私有62.263.047.481.991.6
FairMOT62JDT私有39.766.723.882.240.8
CenterTrack57JDT私有41.878.122.686.835.7
MOTR47JDT私有54.273.540.279.751.5
MOTRv248JDT私有73.483.764.492.176.0
MeMOTR49JDT私有68.580.558.489.971.2
[1] 金沙沙, 龙伟, 胡灵犀, 等. 多目标检测与跟踪算法在智能交通监控系统中的研究进展[J]. 控制与决策, 2023, 38(4): 890-901.
Jin Sha-sha, Long Wei, Hu Ling-xi,et al. Research progress of detection and multi-object tra-cking algorithm in intelligent traffic monitoring system[J]. Control and Decision, 2023, 38(4): 890-901.
[2] Cui Y, Zeng C, Zhao X, et al. SportsMOT: a large multi-object tracking dataset in multiple sports scenes[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 9921-9931.
[3] Peng J, Wang T, Lin W, et al. TPM: multiple object tracking with tracklet-plane matching[J]. Pattern Recognition, 2020, 107: No.107480.
[4] Ren W, Wang X, Tian J, et al. Tracking-by-counting: using network flows on crowd density maps for tracking multiple targets[J]. IEEE Transactions on Image Processing, 2020, 30: 1439-1452.
[5] Shi J. Good features to track[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, 1994: 593-600.
[6] Broida T J, Chellappa R. Estimation of object motion parameters from noisy images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986(1): 90-99.
[7] Isard M, Blake A. Condensation—conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998, 29(1): 5-28.
[8] Nummiaro K, Koller-meier E, Van Gool L. An adaptive color-based particle filter[J]. Image and Vision Computing, 2003, 21(1): 99-110.
[9] 杨欣, 刘加, 周鹏宇, 等.基于多特征融合的粒子滤波自适应目标跟踪算法[J]. 吉林大学学报: 工学版,2015, 45(2): 533-539.
Yang Xin, Liu Jia, Zhou Peng-yu, et al. Adaptive particle filter for object tracking based on fusing multiple features[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(2): 533-539.
[10] Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, USA, 2000: 142-149.
[11] Jeyakar J, Babu R V, Ramakrishnan K. Robust object tracking with background-weighted local kernels[J]. Computer Vision and Image Understanding, 2008, 112(3): 296-309.
[12] Bolme D S, Beveridge J, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]∥Proceedings of the IEEE Conference on Computer V-ision and Pattern Recognition, San Francisco, USA, 2010: 2544-2550.
[13] Henriques J F, Caseiro R, Martins P, et al. Exploitin-g the circulant structure of tracking-by-detection with kernels[C]∥European Conference on Computer Vision, Florence, Italy, 2012: 702-715.
[14] Danelljan M, Shahbaz K F, Felsberg M, et al. Adaptive color attributes for real-time visual tracking[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090-1097.
[15] Zhang K, Zhang L, Liu Q, et al. Fast visual tracking via dense spatio-temporal context learning[C]∥Euro-pean Conference on Computer Vision, Zürich, Swiss-Confederation, 2014: 127-141.
[16] Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 60: 84-90.
[17] Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[18] Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]∥European Conference on Computer Vision, Amsterdam, Netherland, 2016: 21-37.
[19] Bewley A, Ge Z, Ott L, et al. Simple online and realtime tracking[C]∥IEEE International Conference on Image Processing (ICIP). Phoenix, USA, 2016: 3464-3468.
[20] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Venice, Italy, 2017: 2961-2969.
[21] Zhou Z, Xing J, Zhang M, et al. Online multi-target tracking with tensor-based high-order graph matchin-g[C]∥24th International Conference on Pattern Recognition (ICPR), Bejing, China, 2018: 1809-1814.
[22] Zhao D, Fu H, Xiao L, et al. Multi-object tracking with correlation filter for autonomous vehicle[J]. Sensors, 2018, 18(7): 2004.
[23] Zhang Y, Sun P, Jiang Y, et al. Bytetrack: multi-object tracking by associating every detection box[C]∥European Conference on Computer Vision, Tel Aviv, The State of Israel, 2022: 1-21.
[24] Ge Z, Liu S, Wang F, et al. YOLOX: exceeding yo-lo series in 2021[DB/OL]. [2021-08-06]. .
[25] Sun S J, Akhtar N, Song H S, et al. Deep affinity network for multiple object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(1): 104-119.
[26] Yu F, Li W, Li Q, et al. POI: multiple object tracking with high performance detection and appearance feature[C]∥Computer Vision-ECCV 2016 Workshops, Amsterdam, The Netherlands, 2016: 36-42.
[27] Huang K, Sun B, Chen F, et al. Reidtrack: multi-object track and segmentation without motion[DB/OL]. [2023-08-03]. .
[28] Kim C, Fu X L, Alotaibi M, et al. Discriminative appearance modeling with multi-track pooling for real-time multi-object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 2021: 9553-9562.
[29] Cao J, Pang J, Weng X, et al. Observation-centric sort: rethinking sort for robust multi-object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 9686-9696.
[30] Han S, Huang P, Wang H, et al. MAT: motion-aware multi-object tracking[J]. Neurocomputing, 2022, 476: 75-86.
[31] Qin Z, Zhou S, Wang L, et al. Motiontrack: learning robust short-term and long-term mo-tions for multi-object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 17939-17948.
[32] Larsen M, Rolfsjord S, Gusland D, et al. Base: probably a better approach to multi-object track-ing[DB/OL]. [2023-09-21].
[33] Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric[C]∥2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017: 3645-3649.
[34] Karunasekera H, Wang H, Zhang H. Multiple object tracking with attention to appearance, structure, motion and size[J]. IEEE Access, 2019, 7: 104423-104434.
[35] Seidenschwarz J, Brasó G, Serrano V, et al. Simple cues lead to a strong multi-object tracker[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 13813-13823.
[36] Yang M, Han G, Yan B, et al. Hybrid-sort: weak cues matter for online multi-object tracking[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 6504-6512.
[37] Li J, Gao X, Jiang T. Graph networks for multiple object tracking[C]∥Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, USA, 2020: 719-728.
[38] Brasó G, Leal-taixé L. Learning a neural solver for multiple object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 2020: 6247-6257.
[39] Liu Q, Chu Q, Liu B, et al. GSM: graph similarity model for multi-object tracking[C]∥Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 2020: 530-536.
[40] Cetintas O, Brasó G, Leal-taixé L. Unifying short and long-term tracking with graph hierarchies[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 22877-22887.
[41] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]∥Advances in Neural Information Processing Systems, Long Beach, USA, 2017: 5999-6009.
[42] Sun P, Cao J, Jiang Y, et al. Transtrack: multiple o-bject tracking with transformer[DB/OL]. [2021-05-04]..
[43] Meinhardt T, Kirillov A, Leal-taixe L, et al. Trackformer: multi-object tracking with transformers[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 8844-8854.
[44] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]∥European Conference on Computer Vision, Virtual, 2020: 213-229.
[45] Xu Y, Ban Y, Delorme G, et al. TransCenter: transformers with dense representations for multiple-object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(6): 7820-7835.
[46] Chu P, Wang J, You Q, et al. Transmot: spatial-temporal graph transformer for multiple object tracking[C]∥Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 4870-4880.
[47] Zeng F, Dong B, Zhang Y, et al. MOTR: end-to-end multiple-object tracking with transformer[C]∥European Conference on Computer Vision, Tel Aviv, The State of Israel, 2022: 659-675.
[48] Zhang Y, Wang T, Zhang X. MOTRv2: bootstrapping end-to-end multi-object tracking by pretrained object detectors[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 22056-22065.
[49] Gao R, Wang L. MeMOTR: long-term memory-augmented transformer for multi-object tracking[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 9901-9910.
[50] Bertinetto L, Valmadre J, Henriques J, et al. Fully-convolutional siamese networks for object tracking[C]∥European Conference on Computer Vision, Amsterdam, Netherland, 2016: 850-865.
[51] Xu Y, Osep A, Ban Y, et al. How to train your deep multi-object tracker[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 2020: 6787-6796.
[52] Bergmann P, Meinhardt T, Leal-Taixe L. Tracking without bells and whistles[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, USA, 2019: 941-951.
[53] Pang J, Qiu L, Li X, et al. Quasi-dense similarity learning for multiple object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 2021: 164-173.
[54] Gao X, Shen Z, Yang Y. Multi-object tracking with siamese-RPN and adaptive matching strategy[J]. Signal, Image and Video Processing, 2022, 16(4): 965-973.
[55] Shuai B, Berneshawi A, Li X, et al. SiamMOT: siamese multi-object tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 2021: 12372-12382.
[56] Zhou X, Koltun V, Krähenbühl P. Tracking objects as points[C]∥European Conference on Computer Vision, Virtual, 2020: 474-490.
[57] Wang Z, Zheng L, Liu Y, et al. Towards real-time multi-object tracking[C]∥European Conference on Computer Vision, Virtual, 2020: 107-122.
[58] Lu Z, Rathod V, Votel R, et al. Retinatrack: online single stage joint detection and tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 2020: 14668-14678.
[59] Lin T, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Venice, Italy, 2017: 2980-2988.
[60] 曲优, 李文辉. 基于多任务联合学习的多目标跟踪方法[J]. 吉林大学学报: 工学版, 2023, 53(10): 2932-2941.
Qu you, Li Wen-hui. Multiple object tracking method based on multi-task joint learning[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(10): 2932-2941.
[61] Liang C, Zhang Z, Zhou X, et al. Rethinking the competition between detection and reid in multiobject tracking[J]. IEEE Transactions on Image Processing, 2022, 31: 3182-3196.
[62] Zhang Y, Wang C, Wang X, et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129: 3069-3087.
[63] Duan K, Bai S, Xie L, et al. Centernet: keypoint triplets for object detection[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 6569-6578.
[64] Liang T, Li B, Wang M, et al. A closer look at the joint training of object detection and re-identification in multi-object tracking[J]. IEEE Transactions on Image Processing, 2022, 32: 267-280.
[65] Bernardin K, Stiefelhagen R. Evaluating multiple object tracking performance: the clear mot metrics[J]. EURASIP Journal on Image and Video Processing, 2008, 2008: 1-10.
[66] Ristani E, Solera F, Zou R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]∥European Conference on Computer Vision, Amsterdam, Netherland, 2016: 17-35.
[67] Luiten J, Osep A, Dendorfer P, et al. HOTA: a higher order metric for evaluating multi-object tracking[J]. International Journal of Computer Vision, 2021, 129: 548-578.
[68] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 3354-3361.
[69] Leal-taixé L, Milan A, Reid I, et al. MOTchallenge 2015: Towards a benchmark for multi-target tracking[DB/OL]. [2015-04-08]. .
[70] Milan A, Leal-taixé L, Reid I, et al. MOT16: a benchmark for multi-object tracking[DB/OL]. [2016-05-03]. .
[71] Dendorfer P, Rezatofighi H, Milan A, et al. MOT20: a benchmark for multi object tracking in cro-wded scenes[DB/OL]. [2020-03-19]. .
[72] Sun P, Cao J, Jiang Y, et al. Dancetrack: multi-object tracking in uniform appearance and diverse motion[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 20993-21002.
[1] Zong-wei YAO,Chen CHEN,Zhen-yun GAO,Hong-peng JIN,Hao RONG,Xue-fei LI,Hong-pu HUANG,Qiu-shi BI. Visual recognition of excavator keypoints based on synthetic image datasets [J]. Journal of Jilin University(Engineering and Technology Edition), 2026, 56(1): 76-85.
[2] Lin-hong WANG,Yu-yang LIU,Zi-yu LIU,Ying-jia LU,Yu-heng ZHANG,Gui-shu HUANG. Defect recognition of lightweight bridges based on YOLOv5 [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(9): 2958-2968.
[3] Jing LIAN,Ji-bao ZHANG,Ji-zhao LIU,Jia-jun ZHANG,Zi-long DONG. Text-based guided face image inpainting [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2732-2740.
[4] Yuan-ning LIU,Xing-zhe WANG,Zi-yu HUANG,Jia-chen ZHANG,Zhen LIU. Stomach cancer survival prediction model based on multimodal data fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2693-2702.
[5] Jing-shu YUAN,Wu LI,Xing-yu ZHAO,Man YUAN. Semantic matching model based on BERTGAT-Contrastive [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2383-2392.
[6] Hui-zhi XU,Dong-sheng HAO,Xiao-ting XU,Shi-sen JIANG. Expressway small object detection algorithm based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2003-2014.
[7] Ru-bo ZHANG,Shi-qi CHANG,Tian-yi ZHANG. Review on image information hiding methods based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1497-1515.
[8] Yue HOU,Jin-song GUO,Wei LIN,Di ZHANG,Yue WU,Xin ZHANG. Multi-view video speed extraction method that can be segmented across lane demarcation lines [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1692-1704.
[9] Bin WEN,Yi-fu DING,Chao YANG,Yan-jun SHEN,Hui LI. Self-selected architecture network for traffic sign classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1705-1713.
[10] Jian LI,Huan LIU,Yan-qiu LI,Hai-rui WANG,Lu GUAN,Chang-yi LIAO. Image recognition research on optimizing ResNet-18 model based on THGS algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1629-1637.
[11] Zhen-jiang LI,Li WAN,Shi-rui ZHOU,Chu-qing TAO,Wei WEI. Dynamic estimation of operational risk of tunnel traffic flow based on spatial-temporal Transformer network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1336-1345.
[12] Hua CAI,Rui-kun ZHU,Qiang FU,Wei-gang WANG,Zhi-yong MA,Jun-xi SUN. Human pose estimation corrector algorithm based on implicit key point interconnection [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 1061-1071.
[13] Guang-wen LIU,Xin-yue XIE,Qiang FU,Hua CAI,Wei-gang WANG,Zhi-yong MA. Spatiotemporal Transformer with template attention for target tracking [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 1037-1049.
[14] Meng-xue ZHAO,Xiang-jiu CHE,Huan XU,Quan-le LIU. A method for generating proposals of medical image based on prior knowledge optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 722-730.
[15] Hui-zhi XU,Shi-sen JIANG,Xiu-qing WANG,Shuang CHEN. Vehicle target detection and ranging in vehicle image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 185-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!