Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 1940-1947.doi: 10.13229/j.cnki.jdxbgxb.20230915

Previous Articles     Next Articles

Effect of inoculation treatment on thermal conductivity and tensile strength of high carbongray cast iron

Jin-guo WANG1(),Cheng-gang WANG2,Tian-shi LU1,Jian-dong WANG2,Feng LI2,Tie-fang CHENG1,Rui-fang YAN1   

  1. 1.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
    2.FAW Casting Co. ,Ltd. ,Changchun 130022,China
  • Received:2023-10-09 Online:2025-06-01 Published:2025-07-23

Abstract:

The effects of different inoculants on the thermal conductivity of high carbon gray cast iron were studied. DRPL-2C thermal conductivity tester was used to determine the thermal conductivity of gray cast iron at room temperature,WAW-200 tensile testing machine was used to test the tensile strength, XJG-0.5 optical microscope, TESCAN tungsten filament scanning electron microscopy were used for tissue observation, and graphite characteristic parameter statistics (5-8 photos of gray cast iron with different inoculant treatment gray cast iron ) were carried out by using Image-pro plus (IPP), Photoshop and other software. The results showed that different inoculants had different degrees of influence on the graphite microstructure characteristics (graphite tip morphology, graphite length, graphite quantity and graphite proportion) of high carbon ash cast iron, thereby affecting the thermal conductivity of high carbon ash cast iron. In addition to the content of graphite in gray cast iron, the length of graphite and the amount of graphite also have an important impact on the thermal conductivity of high carbon gray cast iron. Compared with the traditional inoculant, the new inoculant can effectively passivate the tip of the graphite, reduce the size and increase the amount of graphite in the gray cast iron structure, and synergistically improve the tensile strength and thermal conductivity of the gray cast iron, which provides some theoretical guidance for the future application of high-carbon gray cast iron in the field of high-strength and high-thermal conductivity materials.

Key words: metallic materials, high carbon gray cast iron, inoculation, thermal conductivity

CLC Number: 

  • TG143.5

Fig.1

Schematic diagram of the specimen"

Table 1

Mass fraction of gray cast iron samples"

试样编号合金成分
CSiMnCuCrSnS
1#(Si-Fe)3.671.260.780.350.230.090.12
2#(Si-Fe)3.791.310.790.350.220.090.12
3#(Ca-Si)3.671.040.710.440.220.100.12
4#(Ba-Si)3.761.190.730.450.220.100.13
5#(Sr-Si)3.801.130.730.430.220.090.14

Fig.2

Thermal conductivity diagram of gray cast iron with different inoculation treatment"

Fig.3

Tensile strength diagram of gray cast iron with different inoculation treatment"

Fig.4

Graphite morphology of gray cast iron with different inoculation treatment"

Table 2

Graphite characteristics and interlamellar spacing of pearlite of grey cast iron"

试样编号石墨长度/μm石墨数量/片石墨面积占比/%珠光体层片间距/nm
1#(Si-Fe)46.9874910.28648
2#(Si-Fe)52.9869111.54607
3#(Ca-Si)64.605128.57370
4#(Ba-Si)57.907429.29418
5#(Sr-Si)40.661 13110.29396

Fig.5

Pearlitic structure of the gray cast iron with different inoculation treatment"

Fig.6

Eutectic cells diagram of grey cast iron with different inoculation treatment"

Table 3

Characteristic parameters of gray cast iron eutectic clusters"

试样编号

共晶团

直径/μm

共晶团数量/

(pcs·cm-2

共晶团级数
1#(Si-Fe)447.226373-4级
2#(Si-Fe)622.763285-6级
3#(Ca-Si)369.559332-3级
4#(Ba-Si)590.123665-6级
5#(Sr-Si)619.313325-6级

Fig.7

Graphite length and area fraction of grey cast iron with different inoculation treatment"

Fig.8

Amount of graphite and interlamellar spacing of pearlite of grey cast iron with different inoculation treatment"

Table 4

Thermal conductivity of different microstructures in gray cast iron[2]"

微观组织导热系数/[W·(m·K)-1
片状石墨(沿基面)293~419
片状石墨(沿C轴方向)84
珠光体50
铁素体71~80
渗碳体7

Table 5

Chemical composition of gray cast iron samples"

试样CSiMnCuCrSnSMo
新型3.771.060.710.370.300.100.050.17
Si-Fe3.751.080.700.380.300.100.050.17

Fig.9

Graphite morphology of the gray cast iron"

Fig.10

Passivated graphite treated with a new inoculant"

Table 6

Characteristic parameters and properties of graphite in gray cast iron"

试样

类型

石墨长度/μm石墨数量/片石墨面积占比/%抗拉强度/MPa

导热系数/

[W·(m·K)-1

新型

孕育剂

55.0760511.4424577.9
Si-Fe孕育剂56.2350510.2722467.2
[1] Wang G Q, Liu Z L, Li Y X, et al. Different thermal fatigue behaviors between gray cast iron and vermicular graphite cast iron[J]. China Foundry, 2022, 19(3): 245-252.
[2] Wang G H, Li Y X. Thermal conductivity of cast iron:a review[J]. China Foundry, 2020, 17(2): 85-95.
[3] Holmgren D. Review of thermal conductivity of cast iron[J]. International Journal of Cast Metals Research, 2005, 18(6): 331-345.
[4] Wang G Q, Chen X, Li Y X. Fuzzy neural network analysis on gray cast iron with high tensile strength and thermal conductivity[J]. China Foundry, 2019, 16(3): 190-197.
[5] Velichko A, Wiegmann A, Mucklich F. Estimation of the effective conductivities of complex cast iron microstructures using FIB-tomographic analysis[J]. Acta Materialia, 2009, 57(17): 5023-5035.
[6] Lian X T, Zhu J N, Dong H, et al. Effects of micro-alloying elements on microstructure, element distribution and mechanical properties in gray irons[J]. International Journal of Metalcasting, 2020, 14(4): 1025-1032.
[7] Liu Y Z, Li Y F, Xing J D. Effect of graphite morphology on the tensile strength and thermal conductivity of cast iron[J]. Materials Characterization, 2018, 144: 155-165.
[8] 王金国, 黄恺, 闫瑞芳, 等. 元胞自动机-有限元法模拟碳当量元素对亚共晶球墨铸铁流动性的影响[J]. 吉林大学学报: 工学版, 2021, 51(3): 855-865.
Wang Jin-guo, Huang Kai, Yan Rui-fang, et al. Effect of cellular automaton-finite element method on the fluidity of subeutectic ductile iron[J].Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 855-865.
[9] Ding X F, Huang H, Matthias W, et al. Development of high performance cast iron with combination of improved mechanical and thermal properties through Mo addition [J]. Metallurgical and Materials Transactions A—Physical Metallurgy and Materials Science, 2018, 49A(8): 3173-3177.
[10] Maluf O, Angeloni M, Castro D B V, et al. Effect of alloying elements on thermal diffusivity of gray cast iron used in automotive brake disks[J]. Journal of Materials Engineering and Performance, 2009, 18(7): 980-984.
[11] Wang G Q, Chen X, Li Y X, et al. Effects of inoculation on the pearlitic gray cast iron with high thermal conductivity and tensile strength[J]. Materials, 2018, 11(10): No.1876.
[12] 范洪远, 李伟, 唐正华, 等. 影响铸铁导热性的工艺因素[J]. 现代铸铁, 2001(2): 14-16.
Fan Hong-yuan, Li Wei, Tang Zheng-hua, et al. Process factors affecting the thermal conductivity of cast iron[J]. Modern Cast Iron, 2001(2): 14-16.
[13] Sun Y L. Effect of carbon content on microstructure and properties of gray cast iron[J]. Advanced Materials Research, 2014, 971-973: 44-48.
[1] Chao YANG,Qing-yun YAO,Shuang-mei TANG,Qi-long CHEN,Feng QIN. Thermal conductivity and electrical insulation properties of fluorographene/polyimide composite films [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 663-673.
[2] Jia-cheng FENG,Wen-biao GONG,Chuan JU,Yu-peng LI,Yu-meng SUN,Rui ZHU. Thermal cycle and microstructures characteristic of bobbin tool friction stir welded 2024 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3184-3191.
[3] Di WU,Wen-hua GENG,Hong-mei LI,Da-qian SUN. Electron backscattered diffraction analysis on interface of aluminum/steel joints produced by plasma arc welding⁃brazing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1331-1337.
[4] Xiao-hong LU,Jin-hui QIAO,Yu ZHOU,Chong MA,Guo-chuan SUI,Zhuo SUN. Research progress of temperature field in friction stir welding [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 1-17.
[5] Jin-guo WANG,Zhi-qiang WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Jin GUO. Effect of Ti addition on microstructure and mechanical properties of ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1653-1662.
[6] Yin-bao TIAN,Jun-qi SHEN,Sheng-sun HU,Jian GOU. Effect of EP/EN Balance on droplet transfer and weld formation of Al alloy by VP⁃CMT [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1663-1668.
[7] Wen-biao GONG,Rui ZHU,Xin-zhe QIE,Heng CUI,Ming-yue GONG. Microstructure and properties of 6082 aluminum alloyultra⁃thick plate preparated by friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 512-519.
[8] Jin-guo WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Zhi-qiang WANG. Effect of TiC particles on microstructure and mechanical properties of as cast ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2010-2018.
[9] Yu⁃peng LI,Da⁃qian SUN,Wen⁃biao GONG. Temperature fields in bobbin⁃tool friction stir welding for 6082⁃T6 aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 836-841.
[10] ZHAO Yu-guang, YANG Xue-hui, XU Xiao-feng, ZHANG Yang-yang, NING Yu-heng. Effects of Al-10Sr modifiers with different states, modification temperature and holding time on microstructure of ZL114A alloy [J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[11] TANG Hua-guo, MA Xian-feng, ZHAO Wei, LIU Jian-wei, ZHAO Zhen-ye. Synthesis microstructure and thermal properties of high performance bulk Al [J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[12] LIU Xiao-bo, ZHOU De-kun, ZHAO Yu-guang. Microstructure and mechanical property of Mg2Si/Al composites fabricated by semi-solid extrusion under different isothermal heat treatments [J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[13] CUI Jin-sheng, HOU Xu-yan, DENG Zong-quan, PAN Wan-jing, JIANG Sheng-yuan. Measurement system and experiment study of the effective thermal conductivity of granular system in a vacuum [J]. 吉林大学学报(工学版), 2016, 46(2): 457-464.
[14] LI Chun-ling, FAN Ding, WANG Bin, YU Shu-rong. 5A06 aluminum alloy and galvanized steel butt welding-brazing by laser with preset filler powder [J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[15] ZHANG Jia-tao, ZHAO Yu-guang, TAN Juan. Effect of starting microstructure on refining potency of electro-pulsing on reverse austenite grain [J]. 吉林大学学报(工学版), 2016, 46(1): 193-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Hongbin,Zhang Chengrui. Open architecture of automotive E/E control system based on quantum frame[J]. 吉林大学学报(工学版), 2006, 36(02): 166 -0171 .
[2] Li Shi-wu,Yang Zhi-fa,Wang Yun-peng,Wang Yu,Kui Hai-lin,Yu Zhuo . Comprehensive method evaluating effect of roadside land scape of high-level road on traffic safety[J]. 吉林大学学报(工学版), 2007, 37(04): 777 -781 .
[3] Chen Hong-bo, Yang Di, Zhang Li-bin. Coplanar HEOLEO aeroassisted space rendezvous[J]. 吉林大学学报(工学版), 2006, 36(03): 404 -0409 .
[4] Xi Jia-xi,Fang Chao-xi,Wang Zong-xin . Tomlinson-Harashima precoder design for MIMO channels with inaccurate channel state information at transmitter[J]. 吉林大学学报(工学版), 2008, 38(01): 229 -232 .
[5] Yang Nan;Liu Ming-shan;Tang Xin-xing;Zhang Hong-yan . Fuzzy prediction control in asphalt concrete mixer[J]. 吉林大学学报(工学版), 2006, 36(06): 914 -918 .
[6] Ma Shun-li,Li Ming-zhe,Sun Gang,Li Xiang-ji,Qian Zhi-rui . Numerical simulation on multipoint forming
process for tailorwelded blank
[J]. 吉林大学学报(工学版), 2008, 38(02): 334 -0339 .
[7] Zheng Hai-hong,Wang Yi-feng,Zeng Ping,Kong Yue-ping,Xu Pei-pei . Watermarking algorithm for halftone images based on human visual system[J]. 吉林大学学报(工学版), 2006, 36(05): 782 -0786 .
[8] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1409 -1414 .
[9] Xie Ning, Zhao Xiao-hui, Mo Xiu-ling,Sun Yu-jing . Performance analysis of UWB receiver using Pre-Rake combining[J]. 吉林大学学报(工学版), 2007, 37(05): 1192 -1196 .
[10] Li Chunguang, Hu Ping, Zhang Xiangkui, Wang Huiyong. Spring back and its compensation test in deepdrawning process of automobile panels by FEM[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 70 -0074 .