Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (11): 3184-3191.doi: 10.13229/j.cnki.jdxbgxb.20230054

Previous Articles    

Thermal cycle and microstructures characteristic of bobbin tool friction stir welded 2024 aluminum alloy

Jia-cheng FENG1,2(),Wen-biao GONG1,2,3(),Chuan JU4,Yu-peng LI1,2,Yu-meng SUN1,2,Rui ZHU1,2   

  1. 1.Key Laboratory of Advanced Structural Materials,Ministry of Education,Changchun University of Technology,Changchun 130012,China
    2.School of Materials Science and Engineering,Changchun University of Technology,Changchun 130012,China
    3.Jilin Province Taihao Railway Vehicles Facilities Co. ,Ltd. ,Changchun 130500,China
    4.Zaozhuang University,Zaozhuang 277000,China
  • Received:2023-01-17 Online:2024-11-01 Published:2025-04-24
  • Contact: Wen-biao GONG E-mail:Fengjc1208@163.com;gwbiao@163.com

Abstract:

Bobbin tool friction stir welding (BT-FSW) was used to weld 2024 aluminum alloy with thickness of 4 mm, and the effect of thermal cycle temperature on the microstructure and mechanical properties of the joint was analyzed. The results show that the peak temperature on the Retreating Side (RS) is higher than that on the advancing side (AS), with a temperature difference of about 20 °C. The average grain size in the stir zone (SZ) is 10.1 μm, the average grain size in each region on the RS is larger than that of the AS, and the proportions of small-angle grain boundaries is smaller than that on the AS. The fine S-phase precipitates are formed in the SZ, reduced number and increased size of precipitates in the heat affected zone (HAZ) resulting in the mechanical properties are reduced. The hardness of the joint is distributed in a "W" shape, with the smallest hardness value of approximately 72.3 HV at the junction of the thermal-mechanically affected zone (TMAZ) and the HAZ on the RS.

Key words: metallic materials, 2024 aluminum alloy, bobbin tool friction stir welding, thermal cycle, the microstructure and mechanical properties

CLC Number: 

  • TG453

Fig.1

Schematic diagram of the welding thermal cycle temperature measurement position"

Fig.2

Schematic diagram of the hardness test position"

Fig.3

Temperature profile of the welding thermal cycle at each temperature measurement point"

Fig.4

The cross-section morphology of 2024 aluminum alloy BT-FSW welded joint"

Fig.5

EBSD morphology of the 2024 aluminum alloy BT-FSW joint"

Fig.6

Grain boundary misorientation distribution of the 2024 aluminum alloy BT-FSW joint"

Fig.7

TEM image and selected area electron diffraction pattern of the 2024 aluminum alloy BT-FSW joint"

Fig.8

Distribution of microhardness of different thickness layers in the cross-section of the 2024 aluminum alloy BT-FSW joint"

1 虞文军, 陈静. 国产2024铝合金不同连接工艺下组织和性能的研究[J]. 应用激光, 2012, 32(6): 31-34.
Yu Wen-jun, Chen Jing. Investigation of 2024 Al-alloy welding joint of different welding technology[J]. Applied Laser, 2012, 32(6): 31-34.
2 马小革. AA7050/AA2024异种铝合金搅拌摩擦焊疲劳特性研究[D]. 沈阳: 沈阳航空航天大学航空航天工程学院, 2013.
Ma Xiao-ge. Research on fatigue properties of friction stir welding AA7050/AA2024 aluminum alloys[D]. Shenyang: School of Aerospace Engineering, Shenyang Aerospace University, 2013.
3 桂兵, 张栋梁. 中厚板2024铝合金MIG焊工艺研究[J]. 焊接技术, 2018, 47(8): 46-48.
Gui Bing, Zhang Dong-liang. Study on MIG welding process of 2024 aluminum alloy for medium thickness plate[J]. Welding Technology, 2018, 47(8): 46-48.
4 郝云飞, 魏瑞刚, 周庆, 等. 焊接热输入对铝合金双轴肩搅拌摩擦焊缝形貌与接头性能的影响[J]. 焊接学报, 2018, 39(2): 84-88.
Hao Yun-fei, Wei Rui-gang, Zhou Qing, et al. Effect of heat input on weld morphology and tensile properties of bobbin friction stir welded joints[J]. Transactions of the China Welding Institution, 2018, 39(2): 84-88.
5 张会杰, 王敏, 张骁, 等. 2A14-T6铝合金双轴肩搅拌摩擦焊特征及接头组织性能分析[J]. 焊接学报, 2015, 36(12): 65-68.
Zhang Hui-jie, Wang Min, Zhang Xiao, et al. Characteristics and joint microstructure-property analysis of bobbin tool friction stir welding of 2A14-T6 aluminum alloy[J]. Transactions of the China Welding Institution, 2015, 36(12): 65-68.
6 Fuse K, Badheka V. Bobbin tool friction stir welding: a review[J]. Science and Technology of Welding & Joining, 2018, 24(4): 277-304.
7 Wang F F, Li W Y, Shen J J, et al. Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al-Li alloy[J]. Materials & Design, 2015, 86(5): 933-940.
8 Xu W F, Luo Y X, Fu M W. Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy[J]. Materials Characterization, 2018, 138(4): 48-55.
9 李敬勇, 周小平, 董春林, 等. 6082铝合金双轴肩搅拌摩擦焊试板温度场研究[J]. 航空材料学报, 2013, 33(5): 36-40.
Li Jing-yong, Zhou Xiao-ping, Dong Chun-lin, et al. Temperature fields in 6082 aluminum alloy samples bobbin-tool friction stir welded[J]. Journal of Aeronautical Materials, 2013, 33(5): 36-40.
10 吉华, 邓运来, 邓建峰, 等. 焊接速度对6005A-T6铝合金双轴肩搅拌摩擦焊接头力学性能的影响[J]. 焊接学报, 2019, 40(5): 24-29.
Ji Hua, Deng Yun-lai, Deng Jian-feng, et al. Effect of welding speed on mechanical properties of bobbin tool friction stir welded 6005A-T6 aluminum alloy joints[J]. Transactions of the China Welding Institution, 2019, 40(5): 24-29.
11 戴忠晨, 云中煌, 付宁宁, 等. 5 mm厚6005A-T6铝合金双轴肩搅拌摩擦焊接头的组织及性能[J]. 机械工程材料, 2018, 42(2): 69-73.
Dai Zhong-chen, Yun Zhong-huang, Fu Ning-ning, et al. Microstructure and properties of bobbin tool friction stir welded joint of 5 mm thick 6005A-T6 aluminum alloy[J]. Materials for Mechanical Engineering, 2018, 42(2): 69-73.
12 王春桂, 赵运强, 董春林, 等. 6063-T6铝合金双轴肩搅拌摩擦焊接头组织及力学性能分析[J]. 焊接学报, 2018, 39(10): 108-112.
Wang Chun-gui, Zhao Yun-qiang, Dong Chun-lin, et al. Analysis on microstructure and mechanical properties of 6063-T6 self-reacting friction stir welding[J]. Transactions of the China Welding Institution, 2018, 39(10): 108-112.
13 Threadgill P L. Friction stir welding-state of the art[R]. Industrial Member Report, 1999.
14 Trueba L, Torres M A, Johannes L B, et al. Process optimization in the self-reacting friction stir welding of aluminum 6061-T6[J]. International Journal of Material Forming, 2017, 11(4): 559-570.
15 钮旭晶, 侯振国, 鲁二敬, 等. 标动铝合金底板双轴肩搅拌摩擦焊的数值仿真[J]. 轨道交通装备与技术, 2019, 2019(6): 26-30.
Niu Xu-jing, Hou Zhen-guo, Lu Er-jing, et al. Numerical simulation of FSW with double probes for base board of standard EMU[J]. Rail Transportation Equipment and Technology, 2019, 2019(6): 26-30.
16 李于朋, 孙大千, 宫文彪. 6082-T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报: 工学版, 2019, 49(3): 836-841.
Li Yu-peng, Sun Da-qian, Gong Wen-biao. Temperature fields in bobbin-tool friction stir welding for 6082-T6 aluminum alloy sheet[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 836-841.
17 Fuse K, Badheka V. Hybrid self-reacting friction stir welding of AA6061-T6 aluminium alloy with cooling assisted approach[J]. Metals, 2020, 11(1): 11010016.
18 Ahmed M M Z, Habba M M A, Elsayed M M, et al. Bobbin tool friction stir welding of aluminum thick lap joints: effect of process parameters on temperature distribution and joints' properties[J]. Materials, 2021, 14(16): 14164585.
19 Wang Z, Zhang B, Zhang Z, et al. Enhanced fatigue properties of 2219 Al alloy joints via bobbin tool friction stir welding[J]. Acta Metallurgica Sinica, 2022, 36: 586-596.
20 Zhu R, Gong W B, Cui H. Temperature evolution, microstructure, and properties of friction stir welded ultra-thick 6082 aluminum alloy joints[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(1/2): 331-343.
21 刘西畅, 李文亚, 高彦军, 等. 铝合金双轴肩搅拌摩擦焊过程材料流动行为[J]. 焊接学报, 2021, 42(3): 48-56.
Liu Xi-chang, Li Wen-ya, Gao Yan-jun, et al. Material flow behavior during bobbin-tool friction stir welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2021, 42(3): 48-56.
22 Scialpi A, Filippis D, Cavaliere P. Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy[J]. Materials & Design, 2007, 28(4): 1124-1129.
23 Lin Y C, Xia Y C, Jiang Y Q, et al. Precipitation hardening of 2024-T3 aluminum alloy during creep aging[J]. Materials Science and Engineering, 2013, 565: 420-429.
24 吕可欣. 2xxx系铝合金主要强化相的微观结构研究[D]. 上海: 上海交通大学材料科学与工程学院, 2019.
Ke-xin Lyu. Study on microstructure of main strengthening phases of 2xxx aluminum alloy[D]. Shanghai: School of Materials Science and Engineering, Shanghai Jiao Tong University, 2019.
25 Fu R D, Zhang J F, Li Y J, et al. Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet[J]. Materials Science and Engineering, 2013, 559: 319-324.
[1] Lei WANG,Xiao-peng LIU,Song ZHOU,Jin-lan AN,Hong-jie ZHANG,Jia-hui CONG. Effect of ultrasonic rolling on fatigue crack propagation behavior of 2024 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3486-3495.
[2] Di WU,Wen-hua GENG,Hong-mei LI,Da-qian SUN. Electron backscattered diffraction analysis on interface of aluminum/steel joints produced by plasma arc welding⁃brazing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1331-1337.
[3] Xiao-hong LU,Jin-hui QIAO,Yu ZHOU,Chong MA,Guo-chuan SUI,Zhuo SUN. Research progress of temperature field in friction stir welding [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 1-17.
[4] Yi-sa FAN,Jing-xin NA,Lin-jian SHANGGUAN. Method for checking bonding strength of high⁃speed EMU side window based on residual strength [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 840-846.
[5] Yin-bao TIAN,Jun-qi SHEN,Sheng-sun HU,Jian GOU. Effect of EP/EN Balance on droplet transfer and weld formation of Al alloy by VP⁃CMT [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1663-1668.
[6] Jin-guo WANG,Zhi-qiang WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Jin GUO. Effect of Ti addition on microstructure and mechanical properties of ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1653-1662.
[7] Wen-biao GONG,Rui ZHU,Xin-zhe QIE,Heng CUI,Ming-yue GONG. Microstructure and properties of 6082 aluminum alloyultra⁃thick plate preparated by friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 512-519.
[8] Jin-guo WANG,Shuai REN,Rui-fang YAN,Kai HUANG,Zhi-qiang WANG. Effect of TiC particles on microstructure and mechanical properties of as cast ductile iron [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2010-2018.
[9] Yu⁃peng LI,Da⁃qian SUN,Wen⁃biao GONG. Temperature fields in bobbin⁃tool friction stir welding for 6082⁃T6 aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 836-841.
[10] ZHAO Yu-guang, YANG Xue-hui, XU Xiao-feng, ZHANG Yang-yang, NING Yu-heng. Effects of Al-10Sr modifiers with different states, modification temperature and holding time on microstructure of ZL114A alloy [J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[11] TANG Hua-guo, MA Xian-feng, ZHAO Wei, LIU Jian-wei, ZHAO Zhen-ye. Synthesis microstructure and thermal properties of high performance bulk Al [J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[12] LIU Xiao-bo, ZHOU De-kun, ZHAO Yu-guang. Microstructure and mechanical property of Mg2Si/Al composites fabricated by semi-solid extrusion under different isothermal heat treatments [J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[13] LI Chun-ling, FAN Ding, WANG Bin, YU Shu-rong. 5A06 aluminum alloy and galvanized steel butt welding-brazing by laser with preset filler powder [J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[14] ZHANG Jia-tao, ZHAO Yu-guang, TAN Juan. Effect of starting microstructure on refining potency of electro-pulsing on reverse austenite grain [J]. 吉林大学学报(工学版), 2016, 46(1): 193-198.
[15] GUAN Qing-feng, LI Yan, HOU Xiu-li, YANG Sheng-zhi, WANG Xiao-tong. Modification of solid solution Mg-Gd-Y-Nd alloy irradiated by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!