Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (8): 2611-2618.doi: 10.13229/j.cnki.jdxbgxb.20231226

Previous Articles    

Reliability-based design of length for auxiliary lane at dual-lane highway exits

Hang ZHANG1(),Yu SUN1,Bao-lin MA1,Shi-hao NIU1,Xing-yue WANG1,Neng-chao LYU2   

  1. 1.School of Transportation,Wuhan University of Technology,Wuhan 430063,China
    2.Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063,China
  • Received:2023-11-08 Online:2025-08-01 Published:2025-11-14

Abstract:

To explore the reasonable length of the auxiliary lane at the exit of the two-lane highway, the operating status of vehicles was analyzed, the maximum distance formula for vehicle lane change in the auxiliary lane segment was derived; by introducing reliability theory, a functional function of the length of the auxiliary lane was established, and the relationship between the length of the auxiliary lane and the reliability of the auxiliary lane was analyzed, the recommended values of the length of the auxiliary lane under different design speeds were calculated; finally, the rationality of the recommended values was analyzed through VISSIM simulation in this paper. The results show that the length of the auxiliary lane is positively correlated with the reliability probability of the auxiliary lane. In different simulation scenarios, the recommended value of the simulation section has good traffic flow compared to the standard value, and will not cause material waste. The research results can provide reference for further improvement of the regulations.

Key words: highway engineering, reliability theory, auxiliary lane, dual-lane highway, VISSIM simulation, traffic safety

CLC Number: 

  • U412.3

Fig.1

Lane distribution of the auxiliary lane section cross section on the highway exit side"

Fig.2

Trajectory of the vehicle on the auxiliary lane"

Table 1

Range of values for the lane change urgency coefficient"

换道方向换道紧急程度系数范围
2.5~3.0
2.0~2.5

Table 2

Waiting time"

设计速度/(km·h-1等待时间/s
802.66
1003.27
1203.76

Table 3

Drivers recognize different levels of information"

信息量所需时间/s判断正确率/%
5条信息1.886.3
2.093.8
2.298.8
6条信息2.286.3
2.495.0
2.697.5
7条信息2.687.5
2.892.5
3.097.5

Table 4

Comparison of distribution parameters of reaction time"

数据来源样本数量/个平均值/s标准差/s
Ahmed(1999)4021.340.31
潘雨帆(2018)201.050.35
柴琳果(2016)301.510.28
徐志(2011)160.960.32

Table 5

K-Stest results for operating speed of auxiliary lane vehicles"

主线设计速度/(km·h-112010080
正态参数平均值101.36081.64071.490
标准差5.7403.4902.840
精确显著性水平(双侧)0.7710.8620.918

Table 6

K-S test results for operating speed of outer lane vehicles"

主线设计速度/(km·h-112010080
正态参数平均值106.45092.29075.440
标准差7.6203.7103.210
精确显著性水平(双侧)0.7840.9650.715

Fig.3

Monte Carlo simulation process"

Fig.4

Probability distribution curves of different lengths of auxiliary lanes"

Table 7

Calculation results of reliability for different lengths of auxiliary lanes"

设计速度/(km·h-1辅助车道长度/m可靠指标

可靠

概率/%

失效

概率/%

804001.5193.446.56
4101.9197.222.78
4202.3098.941.06
4302.7599.70.30
4403.1299.910.09
4503.3599.960.04
1005101.2489.3310.67
5201.5493.856.15
5301.8596.753.25
5402.1698.451.55
5502.4999.370.63
5602.8399.770.23
1205800.1756.8543.15
5900.4266.3833.62
6000.6574.225.80
6100.9181.7518.25
6201.2088.4611.54
6301.4091.928.08
6401.6595.094.91

Table 8

Provisions on the length of auxiliary lanes in the specifications"

主线设计速度/(km·h-112010080
辅助车道长度/m一般值580510440
最小值300250200

Table 9

Reliability indicators corresponding to different levels of highways"

公路等级高速一级二级三级四级
目标可靠指标1.641.281.040.840.52

Table 10

Recommended length values for auxiliary lanes corresponding to different design speeds"

设计速度/(km·h-180100120
辅助车道长度/m405525640

Table 11

Simulation scenario parameters"

场景设计速度/(km·h-1辅助车道长度取值/m
仿真场景1120640
仿真场景2120580
仿真场景3100525
仿真场景4100510
仿真场景580440
仿真场景680405

Table 12

Dominant vehicle model parameters"

车辆类型车长/m加速度/(m·s-2减速度/(m·s-2
最大期望最大期望
小汽车4.6443.527.52.8

Table 13

Expected speed and distribution of dominant vehicle models"

设计速度/(km·h-1下限值上限值分布
12085155正态分布
10085130正态分布
8075110正态分布

Table 14

Driver behavior parameters"

参数最小值最大值平均值
车头时距CC1/s0.71.60.9
跟车变量CC2/m364
进入跟车状态的阈值CC3-9-6-8
最大减速度/(m·s-2-8-2-4

Fig.5

Simulation result statistics"

[1] 程飞, 郭唐仪, 白泉. 美国Florida州高速公路出口区域事故特征分析[J]. 中外公路, 2015, 35(5): 313-317.
Cheng Fei, Guo Tang-yi, Bai Quan. Analysis of accident characteristics of highway exit areas in Florida, USA[J]. Journal of China and Foreign Highway, 2015, 35(5): 313-317.
[2] 邬岚, 赵乐, 李根. 基于方差异质性随机参数模型的汇合行为分析[J]. 吉林大学学报: 工学版, 2024, 54(4): 883-889.
Wu Lan, Zhao Le, Li Gen. Analysis of merging behavior based on random parameter model with heterogeneity in variances[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(4): 883-889.
[3] 邢岩, 吴奂东, 白竹. 快速路入口处辅助车道长度研究[J]. 中国科技论文, 2020, 15(8): 915-920.
Xing Yan, Wu Huan-dong, Bai Zhu. Study on auxiliary lane length at the entrance of expressway[J]. China Sciencepaper, 2020, 15(8): 915-920.
[4] 宋灿灿, 郭忠印, 王维利. 山区高速公路紧急避险车道辅助车道设置[J]. 同济大学学报: 自然科学版, 2016, 44(5): 747-752.
Song Can-can, Guo Zhong-yin, Wang Wei-li. Auxiliary lane for truck escape ramp on expressways in mountainous areas[J]. Journal of Tongji University(Natural Science), 2016, 44(5): 747-752.
[5] 潘兵宏, 王潮, 王俏, 等. 基于微观换道的高速公路双车道出口辅助车道长度研究[J]. 同济大学学报: 自然科学版, 2022, 50(11): 1647-1657.
Pan Bing-hong, Wang Chao, Wang qiao. A study of length of auxiliary lanes for two-lane expressway exits based on microscopic lane change[J]. Journal of Tongji University (Natural Science), 2022, 50(11): 1647-1657.
[6] Navin F P D. Reliability indices for road geometric design[J]. Canadian Journal of Civil Engineering, 1992, 19(5): 760-766.
[7] 张航, 刘洋. 高速公路避险车道平面参数可靠性设计[J]. 武汉理工大学学报: 交通科学与工程版, 2023, 47(2): 203-208.
Zhang Hang, Liu Yang. Reliability design of plane parameters of highway escape ramps[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2023, 47(2): 203-208.
[8] 游克思, 孙璐, 顾文钧. 公路平曲线半径可靠性设计理论与方法[J]. 交通运输工程学报, 2012, 12(6): 1-6.
You Ke-si, Sun Lu, Gu Wen-jun. Reliability design theory and method of highway horizontal curve radius[J]. Journal of Traffic and Transportation Engineering, 2012, 12(6): 1-6.
[9] 陈富坚, 郑峰, 徐培培. 基于货车制动安全的公路长大下坡可靠性设计方法[J]. 北京工业大学学报, 2017, 43(7): 1100-1107.
Chen Fu-jian, Zheng Feng, Xu Pei-pei. Reliability design method for long steep downgrades based on trucks' braking safety[J]. Journal of Beijing University of Technology, 2017, 43(7): 1100-1107.
[10] 潘兵宏, 王烨. 基于双曲正切函数的小客车换道轨迹模型[J]. 江苏大学学报: 自然科学版, 2020, 41(4): 419-425.
Pan Bing-hong, Wang Ye. Car lane changing trajectory model based on hyperbolic tangent function[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(4): 419-425.
[11] 佘守宪, 赵雁. 加加速度(加速度的时间变化率)——冲击、乘座舒适性、缓和曲线[J]. 物理与工程, 2001(3): 7-12.
She Shou-xian, Zhao Yan. Jerk(the time rate of change of acceleration): impact, passenger's comfortability, transition curve[J]. Physics and Engineering, 2001(3): 7-12
[12] 侯德藻, 黄凯, 韩文元. 基于驾驶员认知特性的汉字指路标志字高模型研究[J]. 公路交通科技, 2010, 27(3): 142-146.
Hou De-zao, Huang Kai, Han Wen-yuan. Study on Chinese character height model for traffic guide signs based on perceive characteristics of chinese drivers[J]. Journal of Highway and Transportation Research and Development, 2010, 27(3): 142-146.
[13] 阎莹, 王晓飞, 张宇辉, 等. 高速公路断面运行车速分布特征研究[J]. 中国安全科学学报, 2008(7): 171-176.
Yan Ying, Wang Xiao-fei, Zhang Yu-hui. Research on section operating distribution characteristics of expressway[J]. China Safety Science Journal, 2008(7): 171-176.
[14] 吴明先, 曹骏驹, 林宣财, 等. 多车道高速公路不同车道运行速度的特点[J]. 公路交通科技, 2021, 38(9): 33-44.
Wu Ming-xian, Cao Jun-ju, Lin Xuan-cai. Operating speed characteristics in different lanes of multi-lane expressway[J]. Journal of Highway and Transportation Research and Development, 2021, 38(9): 33-44.
[15] 郭科, 霍春阳. 东纵高速与忻阜高速公路共线段交通量研究[J]. 山西交通科技, 2023(6): 116-120.
Guo Ke, Huo Chun-yang. Research on traffic volume of sharing-line section of dongzong expressway and xinfu expressway[J]. Shanxi Science and Technology of Transportation, 2023(6): 116-120.
[16] 李燊. 基于交通冲突的高速公路互通立交交通安全分析方法[D]. 南京: 东南大学交通学院, 2019.
Li Shen. Freeway interchange traffic safety analysis method based on traffic conflict technique[D]. Nanjing: School of Transportation, Southeast University, 2019.
[1] Yan-yan QIN,Teng-fei XIAO,Qin-zhong LUO,Bao-jie WANG. Car-following safety analysis and control strategy for foggy freeway [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1241-1249.
[2] Zhen-jiang LI,Li WAN,Shi-rui ZHOU,Chu-qing TAO,Wei WEI. Dynamic estimation of operational risk of tunnel traffic flow based on spatial-temporal Transformer network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1336-1345.
[3] Bing HUI,Wei LIU,Yu-kun ZHOU,Shu-qi LI. Simulation on driving safety of bridge /tunnel connecting section of expressway under strong crosswind [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2312-2320.
[4] Xiao-ming HUANG,Run-min ZHAO. Status and prospects of highway transportation infrastructure resilience research [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1529-1549.
[5] Jin XU,Yan-peng WANG,Hai-yuan CHEN,Xiao-bo ZHANG,Cun-shu PAN. Longitudinal driving characteristics and operating speed prediction model of cars on hairpin curves of mountainous roads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3432-3445.
[6] Qian CAO,Zhi-hui LI,Peng-fei TAO,Yong-jian MA,Chen-xi YANG. Traffic accident risk assessment method for road network considering risk heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2817-2825.
[7] Xin ZHANG,Wei-hua ZHANG. Safety analysis of main line under different traffic conditions in expressway confluence area [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1308-1314.
[8] Shu-wei ZHANG,Zhong-yin GUO,Zhen YANG,Ben-min LIU. Application of multi⁃fractal features of driving performance in driver fatigue detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 557-564.
[9] Ping WAN,Chao-zhong WU,Xiao-feng MA. Discriminating threshold of driving anger intensity based on driving behavior features by ROC curve analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 121-131.
[10] WANG Hai-wei, WEN Hui-ying, LIU Min. Experimental evaluation of nighttime driver's physiological characteristics in driving simulator [J]. 吉林大学学报(工学版), 2017, 47(2): 420-428.
[11] YAN Li-xin, HUANG Zhen, ZHU Dun-yao, CHEN Zhi-jun, RAN Bin. Driving risk status identification based on Markov blanket hidden Naive Bayes [J]. 吉林大学学报(工学版), 2016, 46(6): 1851-1857.
[12] FU Rui, MA Yong, GUO Ying-shi, YUAN Wei, SUN Hao. Lane change warning rules based on real vehicle test data [J]. 吉林大学学报(工学版), 2015, 45(2): 379-388.
[13] LI Zhi-bin, LIU Pan, JIN Mao-jing, XU Cheng-cheng. Real-time prediction of rear-end crashes near freeway recurrent bottlenecks [J]. 吉林大学学报(工学版), 2013, 43(06): 1482-1487.
[14] LIAO Jun-hong, SHAO Chun-fu, WU Hong-bo, SUN Yi-xuan, WANG Shu-ling. Calculation and assessment technique of highway 3D dynamic sight distance [J]. 吉林大学学报(工学版), 2013, 43(03): 640-645.
[15] CHENG Yong-chun, GUO Qing-lin, TAN Guo-jin. Improved viscoelastic parameter identification for asphalt mixture [J]. , 2012, (03): 629-633.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!