吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1987-1994.doi: 10.13229/j.cnki.jdxbgxb201606031

Previous Articles     Next Articles

Energy efficiency of one-legged robot hopping passively with elastically suspended load

ZHOU Yu1, 2, 3, FU Cheng-long1, 2, 3, CHEN Ken1, 2, 3   

  1. 1.Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China;
    2.Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipment and Control,Tsinghua University,Beijing 100084,China;
    3.State Key Laboratory of Tribology,Tsinghua University,Beijing 100084,China
  • Received:2015-01-22 Online:2016-11-20 Published:2016-11-20

Abstract: In order to understand how elasticity works on reducing energy dissipation and improving locomotion efficiency of hopping robots, the passive hopping behaviors of hopping robot models with rigidly or elastically suspended load are examined. The influence of different system parameters on energy dissipation is discussed. Theoretical analysis and simulation results show that hopping robots with elastically suspended load exhibit lower energy dissipation than those with rigidly suspended load, because part of the kinematic energy is stored in the suspension spring during the stance phase. As the suspension damping increases, higher stiffness will be needed for the suspension spring to minimize the energy dissipation during hopping. During the flight phase, hopping robots with dissipative elastic suspension have energy dissipation which is, however, much smaller than that during the stance phase, therefore the effect of energy dissipation reduction will not be affected.

Key words: automatic control technology, elasticity, hopping robot, energy dissipation, energy transfer

CLC Number: 

  • TP242
[1] Raibert M. Legged Robots That Balance[M]. Cambridge, USA: MIT Press, 1986:92-95.
[2] Blickhan R. The spring-mass model for running and hopping[J]. Journal of Biomechanics,1989,22(11-12):1217-1227.
[3] Full R, Koditschek D. Templates and anchors: neuromechanical hypotheses of legged locomotion on land[J]. Journal of Experimental Biology,1999,202(23):3325-3332.
[4] Ghigliazza R, Altendorfer R, Holmes P, et al. A simply stabilized running model[J]. SIAM Review,2005,47(3):519-549.
[5] 帅梅,付成龙,杨向东,等. 不平整地面仿人机器人行走控制策略[J]. 机械工程学报,2006,42(8):1-6.
Shuai Mei, Fu Cheng-long, Yang Xiang-dong,et al. Control strategy about humanoid robot stable locomotion on uneven ground[J]. Chinese Journal of Mechanical Engineering,2006,42(8):1-6.
[6] 鄂明成,刘虎,张秀丽,等. 一种粗糙地形下四足仿生机器人的柔顺步态生成方法[J]. 机器人,2014,36(5):584-591.
E Ming-cheng, Liu Hu, Zhang Xiu-li, et al. Compliant gait generation for a quadruped bionic robot walking on rough terrains[J]. Robot,2014,36(5):584-591.
[7] Raibert M, Brown H, Chepponis M. Experiments in balance with a 3D one-legged hopping machine[J]. The International Journal of Robotics Research,1984,3(2):75-92.
[8] 赵明国,裘有斌,陈向,等. 单足气动跳跃机器人的基于时间事件控制方法[J]. 机器人,2012,34(5):525-530.
Zhao Ming-guo, Qiu You-bin, Chen Xiang,et al. Control algorithm based on time event for a pneumatic single-legged hopping robot[J]. Robot,2012,34(5):525-530.
[9] Boggs D.Interactions between locomotion and ventilation in tetrapods[C]∥Annual Meeting of the Society-for-Experimental-Biology,Canterbury,UK,2001:269-288.
[10] Alexander R. Breathing while trotting[J]. Science,1993, 262(5131):196-197.
[11] Kram R. Carrying loads with springy poles[J]. Journal of Applied Physiology,1991,71(3): 1119-1122.
[12] Rome L, Flynn L, Goldman E, et al. Generating electricity while walking with loads[J]. Science, 2005,309(5741):1725-1728.
[13] Kuo A. Harvesting energy by improving the economy of human walking[J]. Science,2005,309(5741):1686-1687.
[14] Foissac M, Millet G, Geyssant A, et al. Characterization of the mechanical properties of backpacks and their influence on the energetics of walking[J]. Journal of Biomechanics,2009,42(2):125-130.
[15] Ackerman J,Seipel J. A model of human walking energetics with an elastically-suspended load[J]. Journal of Biomechanics,2014,47(8):1922-1927.
[16] Ackerman J,Seipel J. Energy efficiency and stability of a nonlinear coupled-oscillator model of hopping with elastically-suspended loads[C]∥Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, USA,2012:271-280.
[17] Ackerman J,Seipel J. Coupled-oscillator model of locomotion stability with elastically-suspended loads[C]∥Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington DC, USA, 2011:199-205.
[18] Da X, Ackerman J, Seipel J. Energetic and dynamic analysis of multifrequency legged robot locomotion with an elastically suspended load[J]. Journal of Computational and Nonlinear Dynamics,2013,9(2):021006.
[19] Ackerman J,Seipel J. Energy efficiency of legged robot locomotion with elastically suspended loads[J]. IEEE Transactions on Robotics,2013,29(2):321-330.
[20] 翟红生,王佳欣.基于人工势场的机器人动态路径规划新方法[J].重庆邮电大学学报:自然科学版,2015,27(6):814-818.
Zhai Hong-sheng,Wang Jia-xin.Dynamic path planning research for mobile robot based on artificial potential field[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2015,27(6):814-818
[21] 王海燕,李贻斌,宁龙霄. 液压驱动双足机器人运动系统的设计及实现[J]. 吉林大学学报:工学版,2014,44(3):750-756.
Wang Hai-yan, Li Yi-bin, Ning Long-xiao. Design and implementation of a hydraulic actuated biped robot motion system[J]. Journal of Jilin University (Engineering and Technology Edition),2014,44(3):750-756.
[22] Wu A, Geyer H. The 3-D spring-mass model reveals a time-based deadbeat control for highly robust running and steering in uncertain environments[J]. IEEE Transactions on Robotics,2013,29(5):1114-1124.
[1] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[2] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[3] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[4] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556-1562.
[5] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[6] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control [J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[7] WANG Lin, WANG Hong-guang, SONG Yi-feng, PAN Xin-an, ZHANG Hong-zhi. Behavior planning of a suspension insulator cleaning robot for power transmission lines [J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[8] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[9] ZHU Feng, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, ZHANG Shi-tao. Gyro signal processing based on strong tracking Kalman filter [J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[10] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[11] FENG Jian-xin. Recursive robust filtering for uncertain systems with delayed measurements [J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[12] XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[13] HU Yun-feng, GU Wan-li, LIANG Yu, DU Le, YU Shu-you, CHEN Hong. Start-stop control of hybrid vehicle based on nonlinear method [J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
[14] SHEN Shuai, ZHANG Bao, LI Xian-tao, ZHU Feng, JIN Chao-qiong. Acceleration feedback control based on tracking differentiator [J]. 吉林大学学报(工学版), 2017, 47(4): 1217-1224.
[15] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .