Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1644-1652.doi: 10.13229/j.cnki.jdxbgxb20180421

Previous Articles     Next Articles

Model predictive load frequency control of microgrid with electrical vehicles

Miao-miao MA1,2(),Jun-jun PAN1,Xiang-jie LIU1,2   

  1. 1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    2. State Key Laboratory of Alternate Electric Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
  • Received:2018-05-02 Online:2019-09-01 Published:2019-09-11

Abstract:

With the development of the Vehicle-to-Microgrid (V2M) technique, Electrical Vehicles (EVs), which are considered as the controllable loads and also as the distributed energy storage units, are used to alleviate the frequency fluctuation of microgrid caused by the intermittent new energy. This paper studies the load frequency control problem of microgrid with EVs. Frequency regulation characteristics of the diesel generator and EVs are analyzed, respectively. Then, the model predictive control strategy is proposed for the load frequency control of microgrid with EVs. The simulation results show that when the system is subjected to a step load fluctuation, the proposed model predictive control strategy can reasonably allocate the output of each system, and quickly eliminate the frequency fluctuation. Moreover, it also extends the life of the generators while providing high-quality power to customers.

Key words: automatic control technology, model predictive control, load frequency control, microgrid, electrical vehicle

CLC Number: 

  • TP273

Fig.1

Grid-connected control diagram of microgrid with EVs"

Fig.2

Ddiagram of control principle of microgrid with EVs"

Fig. 3

Equivalent EV model"

Fig.4

Transfer function model of DG"

Fig.5

Flow chart of MPC algorithm"

Table 1

Parameters of microgrid system with EVs"

微电网系统 参 数 数 值
DG

T g /s

T d /s

R/(Hz·pu-1·MW)

δ d g /(pu·MW·s-1)

μ d g /(pu·MW)

0.1

8

2.5

0.0018

0.06

EV1

T e 1 /s

δ e 1 /(pu·MW·s-1)

μ e 1 /(pu·WM)

E m a x /(pu·MW·h)

E m i n /(pu MW·h)

1

0.02

0.025

0.95

0.80

EV2

T e 2 /s

δ e 2 /(pu·MW·s-1)

μ e 2 /(pu·MW)

E m a x /(pu·MW·h)

E m i n /(pu·MW·h)

1

0.02

0.015

0.90

0.80

Fig. 6

Response to step load disturbance of microgrid with EVs"

Fig. 7

Robust analysis of microgrid with EVs"

1 徐迅, 高蓉, 管必萍, 等 . 微电网规划研究综述[J]. 电网与清洁能源, 2012, 28(7): 25-30.
Xu Xun , Gao Rong , Guan Bi-ping , et al . Overview of research on planning of micro-grid[J]. Power System & Clean Energy, 2012, 28(7): 25-30.
2 董冰, 田彦涛, 周长久 . 基于模糊逻辑的纯电动汽车能量管理优化控制[J]. 吉林大学学报: 工学版, 2015,45(2): 516-525.
Dong Bing , Tian Yan-tao , Zhou Chang-jiu . Fuzzy logic-based optimal control method for energy management of pure electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(2): 516-525.
3 Winkler T , Komarnicki P , Mueller G , et al . Electric vehicle charging stations in Magdeburg,[C] ∥2009 IEEE Vehicle Power and Propulsion Conference IEEE, 2009: 60-65.
4 Atia R , Yamada N . More accurate sizing of renewable energy sources under high levels of electric vehicle integration[J]. Renewable Energy, 2015, 81: 918-925.
5 Jayawarna N , Jenkins N , Barnes M , et al . Safety analysis of a microgrid,[C] ∥2005 IEEE International Conference on Future Power Systems, Amsterdam Netherlands, 2005: 261-278.
6 Kayalvizhi S , Kumar D M V . Load frequency control of an isolated micro grid using fuzzy adaptive model predictive control[J]. IEEE Access, 2017, 5: 16241-16251.
7 Khooban M H , Niknam T , Blaabjerg F , et al . A new load frequency control strategy for micro-grids with considering electrical vehicles[J]. Electric Power Systems Research, 2017, 143: 585-598.
8 Singh M , Kumar P , Kar I . Implementation of vehicle to grid infrastructure using fuzzy logic controller[J]. IEEE Transactions on Smart Grid, 2012, 3(1): 565-577.
9 Datta M , Senjyu T . Fuzzy control of distributed PV inverters/energy storage systems/electric vehicles for frequency regulation in a large power system[J]. IEEE Transactions on Smart Grid, 2013, 4(1): 479-488.
10 Mahmoud M S , Alyazidi N M , Abouheaf M I . Adaptive intelligent techniques for microgrid control systems: a survey[J]. Electrical Power & Energy Systems, 2017, 90: 292-305.
11 Al-Barazanchi S A M , Vural A M . Modeling and intelligent control of a stand-alone PV-wind-diesel-battery hybrid system[C]∥2015 IEEE International Conference on Control, Instrumentation, Communication and Computational Technologies, Kumaracoil, India , 2016: 423-430.
12 Khooban M H , Niknam T , Blaabjerg F , et al . A robust adaptive load frequency control for micro-grids[J]. Isa Transactions, 2016, 65: 220-229.
13 Yang J , Zeng Z , Tang Y , et al . Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory[J]. Energies, 2015, 8(3): 2145-2164.
14 Zarogiannis A , Marinelli M , Træholt C , et al . A dynamic behaviour analysis on the frequency control capability of electric vehicles,[C]∥2014 49th International Universities Power Engineering Conference, Cluj-Napoca Romania, 2014: 10.1109/UPEC.2014.6934763.
15 何晨颖, 耿天翔, 许晓慧, 等 . 利用电动汽车可调度容量辅助电网调频研究[J]. 电力系统保护与控制, 2015, 43(22): 134-140.
He Chen-ying , Geng Tian-xiang , Xu Xiao-hui , et al . Research on grid frequency regulation using schedulable capacity of electric vehicles[J]. Power System Protection & Control, 2015, 43(22): 134-140.
16 Liu X J , Niu L X , Liu J Z . Nonlinear multivariable supervisory predictive control[C]∥2009 American Control Conference,Hyatt Regency Riverfront,St. Louis, MO, USA, 2009: 2779-2784.
17 Cominesi S R , Farina M , Giulioni L , et al . Two-layer predictive control of a micro-grid including stochastic energy sources[C]∥2015 American Control Conference, Chicago, IL, USA , 2015: 918-923.
18 Sagar P S V , Swarup K S . Load frequency control in isolated micro-grids using centralized model predictive control[C]∥2016 IEEE International Conference on Power Electronics, Drives and Energy Systems, Trivandrum, India , 2016: 1-6.
19 Awad B , Ekanayake J , Jenkins N . Intelligent load control for frequency regulation in microgrids[J]. Intelligent Automation & Soft Computing, 2010, 16(2): 303-318.
20 Yang J , He L , Fu S . An improved PSO-based charging strategy of electric vehicles in electrical distribution grid[J]. Applied Energy, 2014, 128(3): 82-92.
21 许芳, 靳伟伟, 陈虹, 等 . 一种模型预测控制器FPGA硬件实现[J]. 吉林大学学报: 工学版, 2014, 44(4): 1042-1050.
Xu Fang , Jin Wei-wei , Chen Hong , et al . Hardware implementation method for model predictive control on a FPGA chip[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4): 1042-1050.
[1] Shu⁃you YU,Lei TAN,Wu⁃yang WANG,Hong CHEN. Control of active four wheel steering vehicle based ontriple⁃step method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 934-942.
[2] Hai⁃ying WEN,Xiang REN,Wei⁃liang XU,Ming CONG,Wen⁃long QIN,Shu⁃hai HU. Bionic design and experimental test of temporomandibular joint for masticatory robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 943-952.
[3] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[4] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[5] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[6] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556-1562.
[7] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[8] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control [J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[9] WANG Lin, WANG Hong-guang, SONG Yi-feng, PAN Xin-an, ZHANG Hong-zhi. Behavior planning of a suspension insulator cleaning robot for power transmission lines [J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[10] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[11] ZHU Feng, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, ZHANG Shi-tao. Gyro signal processing based on strong tracking Kalman filter [J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[12] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[13] FENG Jian-xin. Recursive robust filtering for uncertain systems with delayed measurements [J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[14] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[15] XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!