Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 597-603.doi: 10.13229/j.cnki.jdxbgxb20200002

Previous Articles    

Effective strength improvement of global critical strength branch and bound method

Kai GAO1(),Gang LIU1,2()   

  1. 1.College of Civil Engineering,Chongqing University,Chongqing 400045,China
    2.The Key Laboratory of New Technology for Construction of China in Mountain Area of the Ministry of Education,Chongqing University,Chongqing 400045,China
  • Received:2020-01-03 Online:2021-03-01 Published:2021-02-09
  • Contact: Gang LIU E-mail:gk1988@cqu.edu.cn;gliu@cqu.edu.cn

Abstract:

In view of the existing failure mode search method, the global critical strength branch and bound method, the failure element is directly deleted in the effective strength calculation without considering the dead load and internal force redistribution. The failure mode searched by this method is not consistent with the actual failure path of the structure. Therefore, a more comprehensive method to reflect the failure mode of bridge is proposed. The dead load effect of the structural failure element was applied to the adjacent structures as part of the external load. Considering the redistribution of the internal force of the structure, the internal force and effective strength of the remaining structural system element was optimized. The improved branch and bound method was established. A continuous rigid frame bridge was used to verify the improved method. The results show that the main failure mode of the continuous rigid frame bridge is obtained by the improved method, and the failure path is consistent with the actual damage situation of the bridge, and the failure mode of the bridge structure system is not missed.

Key words: bridge engineering, failure mode, improved branch and bound method, dead load effect, internal force redistribution

CLC Number: 

  • U447

Fig.1

Simple model of mid-span for continuous rigid frame bridges"

Fig.2

Finite element model of rigid frame bridge"

Fig.3

Main failure tree generated by GCBB method"

Fig.4

Main failure tree generated by IGCBB method"

Table 1

Reliability index and failure probability of each failure mode"

失效模式可靠指标β失效概率Pf
26→494.96793.3835×10-7
26→504.95713.5786×10-7
26→515.09531.7411×10-7
1 Coccon M N, Song J, Seung-Yong O, et al. A new approach to system reliability analysis of offshore structures using dominant failure modes identified by selective searching technique[J]. KSCE Journal of Civil Engineering, 2017, 21(6): 2360-2372.
2 曹珊珊, 雷俊卿. 考虑区间不确定性的钢结构疲劳寿命分析[J]. 吉林大学学报: 工学版, 2016, 46(3): 804-810.
Cao Shan-shan, Lei Jun-qing. Fatigue life prediction of steel structure considering interval uncertainty[J], Journal of Jilin University (Engineering and Technology Edition), 2016, 46(3): 804-810.
3 Zhou Q, Li Z, Fan W, et al. System reliability assessment of deteriorating structures subjected to time-invariant loads based on improved moment method[J]. Structural Safety, 2017, 68: 54-64.
4 李杰. 工程结构整体可靠性分析研究进展[J]. 土木工程学报, 2018, 51(8): 1-10.
Li Jie. Advances in global reliability analysis of engineering structures[J]. China Civil Engineering Journal, 2018, 51(8): 1-10.
5 郭学东, 张立业, 董丽娟, 等. 桥梁系统可靠性评估方法[J]. 吉林大学学报: 工学版, 2012, 42(3): 634-638.
Guo Xue-dong, Zhang Li-ye, Dong Li-juan, et al. Bridge system reliability assessment method[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(3): 634-638.
6 Feng Y S. Enumerating significant failure modes of a structure system by using criterion methods[J]. Computer &Structures, 1988, 30(5): 1153-1157.
7 Tang L K, Melchers R E. Dominant mechanisms in stochastic plastic frames[J]. Reliability Engineering, 1987, 18(2): 105-115.
8 Moses F. System reliability developments in structural engineering[J]. Structural Safety, 1982(1): 3-13.
9 Thoft-Christensen P, Murotsu Y. The branch-and-bound method[M]. Application of Structural Systems Reliability Theory,Springer Berlin Heidelberg, 1986.
10 董聪, 冯元生. 枚举结构主要失效模式的一种新方法[J]. 西北工业大学学报, 1991, 9(3): 284-289.
Dong Cong, Feng Yuan-sheng. A new method for identifying significant failure modes of a structural system[J]. Journal of Northwestern Polytechnical University, 1991, 9(3): 284-289.
11 董聪, 杨庆雄. 冗余桁架结构系统可靠性分析理论与算法[J]. 计算结构力学及其应用, 1992, 9(4): 393-398.
Dong Cong, Yang Qing-xiong. Reliability analysis theory and algorithm of redundant truss structures[J]. Computational Structural Mechanics and Applications, 1992, 9(4): 393-398.
12 何雄君, 李季. 预应力混凝土梁桥系统失效树分析[J]. 工程力学, 2009, 26(1): 74-78.
He Xiong-jun, Li Ji. Fault tree analysis of pre-streesed concrete beam bridges[J]. Engineering Mechanics, 2009, 26(1): 74-78.
13 刘梦莹, 徐岳. 基于失效树的连续刚构桥体系可靠度研究[J]. 合肥工业大学学报: 自然科学版, 2014, 37(11): 1341-1345.
Liu Meng-ying, Xu Yue. Research on the reliability of continuous rigid frame bridge system based on failure tree[J]. Journal of Hefei University of Technology, 2014, 37(11): 1341-1345.
14 刘春城, 胡晓炜, 乔亮, 等. 覆冰荷载下500kV输电塔失效模式研究[J]. 水电能源科学, 2013, 31(11): 197-200.
Liu Chun-cheng, Hu Xiao-wei, Qiao Liang, et al. Failure mode analysis for 500kV transmission tower under icing load[J]. Water Resources and Power, 2013, 31(11): 197-200.
15 罗晓瑜, 王春生, 姚书奎, 等. 基于双向渐进结构优化法的钢桥系统失效模式识别[J]. 中国公路学报, 2017, 30(3): 31-39.
Luo Xiao-yu, Wang Chun-sheng, Yao Shu-kui, et al. Identification of system failure modes of steel bridges based on bi-directional evolutionary structural optimization[J]. China Journal of Highway and Transport, 2017, 30(3): 31-39.
16 Gao X, Li S. Dominant failure modes identification and structural system reliability analysis for a long-span arch bridge[J]. Structural Engineering & Mechanics, 2017, 63(6): 799-808.
17 张立业, 郭学东, 董丽娟. 载荷共享过程的桥梁系统首次失效平均时间[J]. 吉林大学学报: 工学版, 2013, 43(5): 1247-1252.
Zhang Li-ye, Guo Xue-dong, Dong Li-juan. Bridge system mean time to failure with load-sharing process[J], Journal of Jilin University (Engineering and Technology Edition), 2013, 43(5): 1247-1252.
18 陈向前, 董聪, 吴霁桂. 腐蚀环境下结构系统疲劳主要失效模式识别[J]. 计算力学学报, 2015, 32(2): 180-185.
Chen Xiang-qian, Dong Cong, Wu Qi-gui. Structural fatigue failure mode identification under corrosive environment[J]. Chinese Journal of Computational Mechanics, 2015, 32(2): 180-185.
19 王英, 尹铸华, 赵人达. 恒载作用下损伤梁的弯矩重分布研究[J]. 岩土力学, 2006, 27():122-126.
Wang Ying, Yin Zhu-hua, Zhao Ren-da. Studying redistribution of bending moment for damaged beam under dead load[J]. Rock and Soil Mechanics, 2006, 27(Sup.1): 122-126.
20 孟令星, 郎需军, 刘凯, 等. 跨越高速铁路输电杆塔可靠度分析[J]. 工业建筑, 2019, 49(8): 121-128.
Meng Ling-xing, Lang Xu-jun, Liu Kai, et al. Reliability analysis of transmission tower crossing high-speed railway [J]. Industrial Construction, 2019, 49(8): 121-128.
21 赵祎强. 基于时变体系可靠度的连续刚构桥安全评估方法[D]. 重庆: 重庆大学土木工程学院, 2017.
Zhao Yi-qiang. Security assessment based on time-dependent reliability for continuous rigid frame bridge[D]. Chongqing: College of Civil Engineering, Chongqing University, 2017.
[1] Ya-feng GONG,Jia-xiang SONG,Guo-jin TAN,Hai-peng BI,Yang LIU,Cheng-xin SHAN. Multi⁃vehicle bridge weigh⁃in⁃motion algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 583-596.
[2] Qing-wen KONG,Guo-jin TAN,Long-lin WANG,Yong WANG,Zhi-gang WEI,Han-bing LIU. Analysis of free vibration characteristics of cracked box girder bridge based on finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 225-232.
[3] Hua CHEN,Yao-jia CHEN,Bin XIE,Peng-kai WANG,Lang-ni DENG. Interface failure mechanism and bonding strength calculation of CFRP tendons bonded anchorage system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1698-1708.
[4] Ya-feng GONG,Jia-xiang SONG,Hai-peng BI,Guo-jin TAN,Guo-hai HU,Si-yuan LIN. Static test and finite element analysis of scale model of fabricated box culvert [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1728-1738.
[5] Hao GAO,Jun-jie WANG,Hui-jie LIU,Jian-ming WANG. Design criterion and applied devices for controlled seismic behavior of continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1718-1727.
[6] Qian-hui PU,Jing-wen LIU,Gang-yun ZHAO,Meng YAN,Xiao-bin LI. Theoretical analysis of bearing capacity of concrete eccentric compressive column reinforced by HTRCS [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 606-612.
[7] Yun-long ZHANG,Yang-yang GUO,Jing WANG,Dong LIANG. Natural frequency and mode of vibration of steel⁃concrete composite beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 581-588.
[8] Bo-xin WANG,Hai-tao YANG,Qing WANG,Xin GAO,Xiao-xu CHEN. Bridge vibration signal optimization filtering method based on improved CEEMD⁃multi⁃scale permutation entropy analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 216-226.
[9] Miao ZHANG,Yong-jiu QIAN,Fang ZHANG,Shou-qin ZHU. Experimental analysis of spatial force performance of concrete-reinforced stone arch bridge based on enlarged section method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 210-215.
[10] Yi JIA,Ren-da ZHAO,Yong-bao WANG,Fu-hai LI. Sensitivity analysis of viscous damper parameters for multi⁃span and long⁃unit continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1871-1883.
[11] Wei-min ZHUANG,Yang LIU,Peng-yue WANG,Hong-da SHI,Ji-shuan XU. Simulation on peeling failure of self⁃piercing riveted joints insteel and aluminum alloy dissimilar sheets [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1826-1835.
[12] Chun-ling ZHONG,Dong LIANG,Yun-long ZHANG,Jing WANG. Calculation of natural vibration frequency of simply supported beam strengthened by external prestressing [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1884-1890.
[13] Lun-hua BAI,Rui-li SHEN,Xing-biao ZHANG,Lu WANG. In-plane stability of self-anchored suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1500-1508.
[14] Jin⁃gang ZHAO,Ming ZHANG,Yu⁃lin ZHAN,Ming⁃zhi XIE. Damage criterion of reinforced concrete pier based on plastic strain energy density [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1124-1133.
[15] Shi⁃cheng WAN,Qiao HUANG,Jian GUAN,Zhao⁃yuan GUO. Strengthening of continuous steel⁃concrete composite beams in negative moment region using prestressed carbon fiber⁃reinforced polymer plates [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1114-1123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!