Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1544-1551.doi: 10.13229/j.cnki.jdxbgxb.20231069

Previous Articles     Next Articles

Hot corrosion behaviors of CrCoNi medium entropy alloy by laser melting deposition

Yong-gang WANG1,2(),He-jian LIU1,Chuan-yang WANG2,Lei WANG3,Run-dong QIAN2,Dong-ya LI1,Yi-jun DONG1   

  1. 1.Applied Technology College of Soochow University,Suzhou 215325,China
    2.School of Mechanical and Electrical Engineering,Soochow University,Suzhou 215137,China
    3.College of Mechanical Engineering,Suzhou University of Science and Technology,Suzhou 215009,China
  • Received:2023-10-09 Online:2025-05-01 Published:2025-07-18

Abstract:

This work focuses on the hot corrosion performances of CrCoNi medium entropy alloy (MEA) prepared by laser melting deposition (LMD), and solves the problem that affecting laws of temperature on the hot corrosion kinetics, corrosion morphology and product of MEA. The following results are obtained: the phase of the formed alloy is FCC phase, and the sample contains a small amount of pores and cracks. The microstructure is a mixed dendritic substructure of equiaxed cell and column dendrites. The hot corrosion rates kp at three temperatures of 700,900 and 1 100 ℃ are 3.920 37×104, 0.002 36, and 0.005 49 mg2/(cm4·h), respectively. The hot corrosion rate increases with the increase of temperature at three different temperatures, and the hot corrosion kinetics curve basically follows the parabolic law; The corrosion layer products are Cr2O3 and a small amount of NiCr2O4 and CoCr2O4 spinel phases. Under the combined action of volatile chlorine gas and thermal stress, the corrosion layer will undergo damage and peeling. The research results have theoretical value for promoting the application of LMD-prepared MEA in high-temperature structural components.

Key words: mechanical engineering, laser melting deposition, CrCoNi medium entropy alloy, hot corrosion, corrosion kinetics

CLC Number: 

  • TG139

Fig.1

XRD analysis results of CrCoNi MEA powders and LMD-fabricated specimens"

Fig.2

Microstructure of CrCoNi MEA fabricated by LMD"

Fig. 3

Hot corrosion kinetics curves andparabola of CrCoNi MEA fabricated by LMD"

Fig. 4

XRD patterns of surface corrosion products of LMD-fabricated CrCoNi MEA after hot corrosion for 100 hours"

Fig.5

Surface morphologies of LMD-fabricated CrCoNi MEA after hot corrosion"

Table 1

EDS analysis results of different regions in Fig.5"

区域OCrCoNi
52.9334.257.235.59
45.7538.625.859.78
48.5630.293.6014.67
53.7716.7812.5616.89

Fig. 6

Cross-sectional morphologies of LMD-fabricated CrCoNi MEA after hot corrosion for 100h"

Table 2

EDS analysis results of different regions in Fig.6"

区域OCrCoNi
151.3840.363.294.97
232.796.8930.9629.36
338.9536.248.1316.68
448.3237.957.396.34
540.2623.5118.6117.62
645.3838.6110.645.37
[1] Jien Y E H. Recent progress in high entropy alloys[J]. European Journal of Control, 2006, 31(6): 633-648.
[2] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering, 2004, 375: 213-218.
[3] Okamoto N L, Yuge K, Tanaka K, et al. Atomic displacement in the CrMnFeCoNi high-entropy alloy—a scaling factor to predict solid solution strengthening[J]. AIP Advances, 2016, 6(12): 125008.
[4] Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys[J]. Intermetallics, 2014, 46: 131-140.
[5] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[6] Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J]. Nature Communications, 2016, 7(1): 10602.
[7] Zhang R, Zhao S, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy[J]. Nature, 2020, 581: 283-287.
[8] 回丽, 陆家琛, 周松, 等. 热处理对TC4钛合金激光双束焊接接头疲劳性能的影响[J]. 吉林大学学报: 工学版, 2023, 53(1): 105-110.
Hui Li, Lu Jia-chen, Zhou Song, et al. Effect of heat treatment on fatigue properties of TC4 titanium alloy by laser double beam welded joint[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 105-110.
[9] Feng K, Zhang Y, Li Z, et al. Corrosion properties of laser cladded CrCoNi medium entropy alloy coating[J]. Surface and Coatings Technology, 2020, 397: 126004.
[10] Adomako N K, Kim J H, Hyun Y T. High-temperature oxidation behaviour of low-entropy alloy to medium-and high-entropy alloys[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133: 13-26.
[11] Agustianingrum M P, Lee U, Park N. High-temperature oxidation behaviour of CoCrNi medium-entropy alloy[J]. Corrosion Science, 2020, 173: 108755.
[12] Stephan S C, Schulz W, Schneider M, et al. High-temperature oxidation in dry and humid atmospheres of the equiatomic CrMnFeCoNi and CrCoNi high-and medium-entropy alloys[J]. Oxidation of Metals, 2021, 95: 105-133.
[13] Piglione A, Dovgyy B, Liu C, et al. Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion[J]. Materials Letters, 2018, 224: 22-25.
[14] Xue P, Zhu L, Xu P, et al. Research on process optimization and microstructure of CrCoNi medium-entropy alloy formed by laser metal deposition[J]. Optics & Laser Technology, 2021, 142: 107167.
[15] 贾玺泉, 徐震霖, 周生璇, 等. 退火温度对激光增材制造CoCrFeMnNi高熵合金耐点蚀性能的影响[J]. 表面技术, 2023, 52(2): 272-281.
Jia Xi-quan, Xu Zhen-lin, Zhou Sheng-xuan, et al. Effect of annealing temperature on pitting resistance of CoCrFeMnNi high-entropy alloy fabricated by laser additive manufacturing[J]. Surface Technology, 2023, 52(2): 272-281.
[16] Chew Y, Bi G J, Zhu Z G, et al. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy[J]. Materials Science and Engineering, 2019, 744: 137-144.
[17] Butler T M, Weaver M L. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys[J]. Journal of Alloys and Compounds, 2016, 674: 229-244.
[18] Choi Y O, Han J W, Hong H S, et al. Study on the corrosion resistance of high strength bolt, nut and washer set (S10T) related to the surface treatment conditions[J]. Journal of Welding and Joining, 2018, 36(2): 34-39.
[19] 张平, 李远田, 张金勇, 等. Si对AlCoCrFeNi高熵合金热腐蚀行为的影响[J]. 稀有金属材料与工程, 2021, 50(10): 3640-3646.
Zhang Ping, Li Yuan-tian, Zhang Jin-yong, et al. Effect of Si addition on hot corrosion behavior of AlCoCrFeNi high entropy alloys[J]. Rare Metal Materials and Engineering, 2021,50(10): 3640-3646.
[20] 胡凯, 刘侠, 张世宏, 等. 氧燃比对NiCrAlY涂层的微观结构及其在KCl熔盐中热腐蚀行为的影响[J].中国有色金属学报, 2021, 31(6): 1545-1558.
Hu Kai, Liu Xia, Zhang Shi-hong, et al. Effect of oxygen-fuel ratio on microstructure and hot corrosion behavior of NiCrAlY coatings in KCl molten salt[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(6): 1545-1558.
[21] Sugimoto K, Seto M, Tanaka S, et al. Corrosion resistance of artificial passivation films of Fe2O3‐Cr2O3‐NiO formed by metalorganic chemical vapor deposition[J]. Journal of the Electrochemical Society, 1993, 140(6): 12221606.
[22] 王迪, 王栋, 谢光, 等. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J].金属学报, 2021, 57(6): 780-790.
Wang Di, Wang Dong, Xie Guang, et al. Influence of Pt-Al coating on hot corrosion resistance behaviors of a Ni-based single-crystal superalloy[J]. Acta Metallurgica Sinica, 2021, 57(6):780-790.
[23] Jiang D, Li Z, Xu J, et al. High-temperature oxidation behaviors of an equiatomic CrMnFeCoNi high entropy alloy[J]. Materials Today Communications, 2022, 32: 104185.
[24] Wang Y, Zhang M, Jin J, et al. Oxidation behavior of CoCrFeMnNi high entropy alloy after plastic deformation[J]. Corrosion Science, 2020, 163: 108285.
[25] Chen L, Lan H, Huang C, et al. Hot corrosion behavior of porous nickel-based alloys containing molybdenum in the presence of NaCl at 750° C[J]. Engineering Failure Analysis, 2017, 79: 245-252.
[26] Cao J, Zhang J, Hua Y, et al. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing[J]. Materials Characterization, 2017, 125: 67-75.
[1] Chang-long ZHAO,Chen MA,Jun-bao YANG,Qin-xiang ZHAO,Xiao-yu JIA,Hong-nan MA. Influence of pre⁃set surface texture on laser cladding of 316L coatings [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 899-911.
[2] Lei SHANG,Ping YANG,Xiang-guo YANG,Jian-xin PAN,Jun YANG,Meng-ru ZHANG. Temperature control of proton exchange membrane fuel cell thermal management system based on APSO-BP-PID control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2401-2413.
[3] Lin JIANG,Guo-long LI,Shi-long WANG,Kai XU,Zhe-yu LI. Thermal expansion error modeling of feed axis based on principal component regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2149-2155.
[4] Ze-qiang ZHANG,Can WANG,Jun-qi LIU,Dan JI,Si-lu LIU. Parallel row ordering problem based on improved sparrow search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1851-1861.
[5] Cai-xia SHU,Jia YANG,Qing-xi LIAO,Xing-yu WAN,Jia-cheng YUAN. Design and experiment of diversion type double-cylinder cyclone separation system for rapeseed combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1807-1820.
[6] Li HUI,Lei JIN,Wan-wan SONG,Song ZHOU,Jin-lan AN. Crack growth rate of SMA490BW steel in different welding areas for bogie [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 650-656.
[7] Zhi-jun YANG,Chi ZHANG,Guan-xin HUANG. Mechanical model of rigid⁃flexible coupling positioning stage based on floating coordinate method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 385-393.
[8] Yun-tong LI,Xing-yu WAN,Qing-xi LIAO,Yin-lei LIU,Qing-song ZHANG,Yi-tao LIAO. Design and experiment of wide folding rape windrower based on crawler type power chassis [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3740-3754.
[9] Wei-jun WU,Jiang-bo WU,Jia-le ZHANG,Qiang ZHOU,Qiao-hong YANG,Xun-peng QIN. Stability analysis and scale synthesis of new multifunctional aerial work platform [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3450-3459.
[10] Lei WANG,Xiao-peng LIU,Song ZHOU,Jin-lan AN,Hong-jie ZHANG,Jia-hui CONG. Effect of ultrasonic rolling on fatigue crack propagation behavior of 2024 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3486-3495.
[11] Huan-lin ZHOU,Xin GUO,Xuan WANG,Li-xue FANG,Kai LONG. Topology optimization design of multiphase porous structures considering geometric nonlinearity [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2754-2763.
[12] Lin-rong SHI,Wu-yun ZHAO. Design and test of rolling spoon type flaxes precision hole sower for caraway in northwest cold and arid agricultural region [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2706-2717.
[13] Bo-sen CHAI,Guang-yi WANG,Dong YAN,Guo-ren ZHU,Jin ZHANG,Heng-sheng LYU. Numerical simulation of cavitation in torque converter and analysis of its influence on performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2236-2244.
[14] Guo-hui CHEN,Ye-yin XU,Ying-hou JIAO. Meshing stiffness calculation and vibration analysis of helical gear considering deflection [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1902-1910.
[15] Sheng LI,Jia ZHU,De-hui HUANG,Cun-fu CHEN,Hong-qing FEI,Wei FENG,Xing-jun HU. Structural parameters optimization of louver fins of air⁃cooled charge air cooler [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 998-1006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Da-shan, DONG Yu-li, WU Ya-ping. Calculation of tensile membrane effect of one-way concrete slabs[J]. 吉林大学学报(工学版), 2013, 43(05): 1253 -1257 .
[2] Wang Jianhua,Wang Yuncheng,Fu Tiejun,Zhang Baosheng. Power performance of rear wheel drive vehicle with disktype mechanical limitedslip differential[J]. 吉林大学学报(工学版), 2006, 36(02): 161 -0165 .
[3] . [J]. 吉林大学学报(工学版), 2005, 35(03): 319 -322 .
[4] PEI Yu-Long, MA Yan-Li. Effects of driver fatigue on his sense, judgement and operation behavior[J]. 吉林大学学报(工学版), 2009, 39(05): 1151 -1156 .
[5] HU Liang,LIU Zhe-li,CHENG Xiao-chun,SUN Tao. Security of identity-based broadcast encryption[J]. 吉林大学学报(工学版), 2010, 40(01): 165 -0170 .
[6] Pei Shi-hui,Zhao Hong-wei . RSAbased 3move undeniable signatures scheme[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 134 -138 .
[7] Ouyang Ji-hong,Ouyang Dan-tong,Liu Da-you . Region movement model based on fuzzy sets and RCC theory[J]. 吉林大学学报(工学版), 2007, 37(03): 591 -0594 .
[8] LI Zhong-Hua, BA Heng-Jing. [J]. 吉林大学学报(工学版), 2009, 39(04): 926 -931 .
[9] XU Wang-tu,HE Shi-wei,SONG Rui. Headway and fare optimization model for feeder bus of rail transit[J]. 吉林大学学报(工学版), 2009, 39(06): 1469 -1474 .
[10] YU Xiang-Jun, WANG Guo-Qiang, WANG Ji-Xin, TANG Xiao-Bo, HU Ji. Dynamic response of rollover prevention system for wheel loader[J]. 吉林大学学报(工学版), 2010, 40(05): 1262 -1267 .